cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339638 Number of nonempty sets of distinct positive integers that have a least common multiple <= n.

Original entry on oeis.org

1, 3, 5, 9, 11, 21, 23, 31, 35, 45, 47, 91, 93, 103, 113, 129, 131, 175, 177, 221, 231, 241, 243, 427, 431, 441, 449, 493, 495, 713, 715, 747, 757, 767, 777, 1177, 1179, 1189, 1199, 1383, 1385, 1603, 1605, 1649, 1693, 1703, 1705, 2457, 2461, 2505, 2515, 2559, 2561, 2745, 2755
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2020

Keywords

Comments

Partial sums of A076078.

Examples

			a(5) = 11 sets: {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4} and {1, 2, 4}.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[MoebiusMu[k/d] (2^DivisorSigma[0, d] - 1), {d, Divisors[k]}], {k, n}], {n, 55}]
    Accumulate[Table[Sum[MoebiusMu[k/d] (2^DivisorSigma[0, d] - 1), {d, Divisors[k]}], {k, 1, 60}]] (* Vaclav Kotesovec, Dec 25 2020 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d) * (2^numdiv(d) - 1))); \\ Michel Marcus, Dec 11 2020

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} mu(k/d) * (2^tau(d) - 1), where tau = A000005.