A339643 Number of rooted trees with n nodes colored using exactly 3 colors.
0, 0, 9, 102, 870, 6744, 50421, 371676, 2731569, 20113005, 148752507, 1106207331, 8274878880, 62263100994, 471138360426, 3584051515209, 27399942354822, 210432444531798, 1622954350900455, 12565580096217270, 97634810663895132, 761110656740387865, 5951117699678438271
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n<2, k*n, (add(add(b(d, k)* d, d=numtheory[divisors](j))*b(n-j, k), j=1..n-1))/(n-1)) end: a:= n-> b(n, 3)-3*b(n, 2)+3*b(n, 1): seq(a(n), n=1..23); # Alois P. Heinz, Dec 11 2020
-
Mathematica
b[n_, k_] := b[n, k] = If[n < 2, k*n, (Sum[Sum[b[d, k]*d, {d, Divisors[j]}]*b[n - j, k], {j, 1, n - 1}])/(n - 1)]; a[n_] := b[n, 3] - 3 b[n, 2] + 3 b[n, 1]; Array[a, 23] (* Jean-François Alcover, Jan 04 2021, after Alois P. Heinz *)
-
PARI
\\ See A141610 for U(N,m) seq(n)={U(n,3) - 3*U(n,2) + 3*U(n,1)}