A339657 Heinz numbers of non-loop-graphical partitions of even numbers.
7, 13, 19, 21, 22, 29, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 154, 155, 156, 159, 163, 165, 166, 169, 171
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 7: {4} 57: {2,8} 107: {28} 13: {6} 61: {18} 111: {2,12} 19: {8} 62: {1,11} 113: {30} 21: {2,4} 66: {1,2,5} 115: {3,9} 22: {1,5} 71: {20} 116: {1,1,10} 29: {10} 76: {1,1,8} 117: {2,2,6} 34: {1,7} 79: {22} 118: {1,17} 37: {12} 82: {1,13} 121: {5,5} 39: {2,6} 85: {3,7} 129: {2,14} 43: {14} 87: {2,10} 130: {1,3,6} 46: {1,9} 89: {24} 131: {32} 49: {4,4} 91: {4,6} 133: {4,8} 52: {1,1,6} 94: {1,15} 134: {1,19} 53: {16} 101: {26} 136: {1,1,1,7} 55: {3,5} 102: {1,2,7} 138: {1,2,9} For example, the three loop-multigraphs with degrees y = (5,2,1) are: {{1,1},{1,1},{1,2},{2,3}} {{1,1},{1,1},{1,3},{2,2}} {{1,1},{1,2},{1,2},{1,3}}, but since none of these is a loop-graph (they have multiple edges), the Heinz number 66 is in the sequence.
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A321728 is conjectured to be the version for half-loops {x} instead of loops {x,x}.
A339655 counts these partitions.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339844 counts loop-graphical partitions by length.
factorizations of n into distinct primes or squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[50],EvenQ[Length[nrmptn[#]]]&&Select[mpsbin[nrmptn[#]],UnsameQ@@#&]=={}&]
Comments