A339661 Number of factorizations of n into distinct squarefree semiprimes.
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 210, 1260, 4620, 30030, 69300 are respectively 3, 2, 6, 15, 7: (6*35) (6*10*21) (6*10*77) (6*55*91) (6*10*15*77) (10*21) (6*14*15) (6*14*55) (6*65*77) (6*10*21*55) (14*15) (6*22*35) (10*33*91) (6*10*33*35) (10*14*33) (10*39*77) (6*14*15*55) (10*21*22) (14*33*65) (6*15*22*35) (14*15*22) (14*39*55) (10*14*15*33) (15*22*91) (10*15*21*22) (15*26*77) (21*22*65) (21*26*55) (22*35*39) (26*33*35) (6*35*143) (10*21*143) (14*15*143)
Links
Crossrefs
A320656 is the not necessarily strict version.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A322794 counts uniform factorizations, such as these.
A339561 lists positions of nonzero terms.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
bfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; Table[Length[bfacs[n]],{n,100}]
-
PARI
A280710(n) = (bigomega(n)==2*issquarefree(n)); \\ From A280710. A339661(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA280710(d), s += A339661(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022
Extensions
More terms and secondary offset added by Antti Karttunen, May 02 2022
Comments