A340542 Number of Fibonacci divisors of Fibonacci(n)^2 + 1.
1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 4, 4, 3, 5, 5, 3, 5, 5, 3, 5, 5, 3, 5, 6, 4, 5, 6, 4, 5, 5, 3, 5, 5, 5, 7, 5, 5, 7, 5, 3, 5, 5, 3, 7, 7, 3, 7, 8, 4, 5, 6, 4, 5, 7, 5, 5, 7, 5, 5, 5, 3, 7, 7, 5, 9, 7, 5, 7, 5, 3, 5, 5, 3, 7, 7, 5, 9, 7, 5, 8, 6, 3, 6, 8, 5, 5, 7
Offset: 0
Keywords
Examples
a(13) = 5 because the 5 Fibonacci divisors of Fibonacci(13)^2 + 1 = 233^2 + 1 are 1, 2, 5, 89 and 610. a(16) = 5 because the 5 Fibonacci divisors of Fibonacci(16)^2 + 1 = 987^2 + 1 are 1, 2, 5, 610, and 1597. Remark: the 5 Fibonacci divisors of Lucas(16)^2 + 1 = 2207^2 + 1 are 1, 2, 5, 610, and 1597, the index 16 = 2*8 with 8 of the form 5*k + 3.
Links
- Michel Marcus, Table of n, a(n) for n = 0..200
Programs
-
Maple
with(combinat,fibonacci):nn:=100:F:={}: for k from 0 to nn do: F:=F union {fibonacci(k)}: od: for m from 0 to 90 do: f:=fibonacci(m)^2+1:d:=numtheory[divisors](f): lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1): od:
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); \\ A010056 a(n) = sumdiv(fibonacci(n)^2+1, d, isfib(d)); \\ Michel Marcus, Jan 12 2021
Comments