A339677 Partition array: T(n, k) is the number of aperiodic necklaces (Lyndon words) on a multiset of colored beads (of size n) whose color multiplicities form the k-th partition of n in Abramowitz-Stegun order.
1, 0, 1, 0, 1, 2, 0, 1, 1, 3, 6, 0, 1, 2, 4, 6, 12, 24, 0, 1, 2, 3, 5, 10, 14, 20, 30, 60, 120, 0, 1, 3, 5, 6, 15, 20, 30, 30, 60, 90, 120, 180, 360, 720, 0, 1, 3, 7, 8, 7, 21, 35, 51, 70, 42, 105, 140, 210, 312, 210, 420, 630, 840, 1260, 2520, 5040, 0, 1, 4, 9, 14, 8, 28, 56, 70, 84, 140
Offset: 1
Examples
Array begins: k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -------------------------------------------- n=1: 1 n=2: 0 1 n=3: 0 1 2 n=4: 0 1 1 3 6 n=5: 0 1 2 4 6 12 24 n=6: 0 1 2 3 5 10 14 20 30 60 120 n=7: 0 1 3 5 6 15 20 30 30 60 90 120 180 360 720 Consider partition L = (4, 2). There are 3 = A212359(6, L) necklaces on the bead set {a^4, b^2}: (aaaabb), (aaabab), and (aabaab). The latter has a period smaller than its size (3 < 6), whereas the other two are aperiodic. Hence, T(6, L) = 2. T(n, (1,...,1)) = A212359(n, (1,...,1)) = (n-1)!, counting necklaces with n beads, each in a different color.
Links
- Álvar Ibeas, First 25 rows, flattened
Programs
-
PARI
C(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, moebius(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n} Row(n)=[C(Vec(p)) | p<-partitions(n)] for(n=1, 7, print(Row(n))) \\ Andrew Howroyd, Dec 14 2020
Comments