A339725 Odd composite integers m such that A006497(3*m-J(m,13)) == 11*J(m,13) (mod m), where J(m,13) is the Jacobi symbol.
9, 27, 119, 133, 145, 165, 205, 261, 341, 393, 649, 693, 705, 901, 945, 1121, 1173, 1189, 1353, 1431, 1485, 1881, 2133, 2805, 3201, 3605, 3745, 4187, 5173, 5461, 5841, 5945, 6165, 6213, 6485, 6943, 6993, 7107, 7991, 8321, 8449, 9669, 11041, 11781, 11961, 12861
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
- D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
- D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
Links
- Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).
Crossrefs
Programs
-
Mathematica
Select[Range[3, 13000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[LucasL[3*# - JacobiSymbol[#, 13], 3] - 11*JacobiSymbol[#, 13], #] &]
Comments