A323921 a(n) = (4^(valuation(n, 4) + 1) - 1) / 3.
1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 21, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 21, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 21, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 85, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 21, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 21, 1, 1, 1, 5
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[(4^(IntegerExponent[n, 4] + 1) - 1)/3, {n, 1, 100}] nmax = 100; CoefficientList[Series[Sum[4^k x^(4^k)/(1 - x^(4^k)), {k, 0, Floor[Log[4, nmax]] + 1}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = (4^(valuation(n, 4) + 1) - 1) / 3; \\ Michel Marcus, Jul 09 2022
-
Python
def A323921(n): return ((1<<((~n&n-1).bit_length()&-2)+2)-1)//3 # Chai Wah Wu, Jul 09 2022
Formula
G.f.: Sum_{k>=0} 4^k * x^(4^k) / (1 - x^(4^k)).
L.g.f.: -log(Product_{k>=0} (1 - x^(4^k))).
Dirichlet g.f.: zeta(s) / (1 - 4^(1 - s)).
From Amiram Eldar, Nov 27 2022: (Start)
Multiplicative with a(2^e) = (4^floor((e+2)/2)-1)/3, and a(p^e) = 1 for p != 2.
Sum_{k=1..n} a(k) ~ n*log_4(n) + (1/2 + (gamma - 1)/log(4))*n, where gamma is Euler's constant (A001620). (End)
Comments