cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339750 Number of (undirected) paths in the 2 X n king graph.

Original entry on oeis.org

1, 30, 235, 1448, 7909, 40674, 202719, 994268, 4837337, 23441366, 113377235, 547864528, 2646278093, 12779454410, 61709221831, 297968336836, 1438739595201, 6946894643134, 33542671171515, 161958548471736, 782005482553269, 3775857399168946, 18231454211243951, 88029252078796716
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2020

Keywords

Crossrefs

Row 2 of A307026.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A(start, goal, n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal)
        return paths.len()
    def A307026(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339750(n):
        return A307026(n, 2)
    print([A339750(n) for n in range(1, 21)])

Formula

Empirical g.f.: x*(16*x^4 - 48*x^3 + 32*x^2 - 20*x - 1) / ((x-1)^2 * (2*x - 1)^2 * (4*x^2 + 4*x - 1)). - Vaclav Kotesovec, Dec 16 2020