cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339762 Number of (undirected) Hamiltonian paths in the 4 X n king graph.

Original entry on oeis.org

1, 208, 4678, 171592, 4743130, 132202038, 3461461060, 88405359072, 2197293738684, 53565801482634, 1284136961473864, 30365618160010650, 709700882866473654, 16422374051280905778, 376744989106882359402, 8578133199326578887346, 194030408441913214687458
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A(start, goal, n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        paths = GraphSet.paths(start, goal, is_hamilton=True)
        return paths.len()
    def B(n, k):
        m = k * n
        s = 0
        for i in range(1, m):
            for j in range(i + 1, m + 1):
                s += A(i, j, n, k)
        return s
    def A339762(n):
        return B(n, 4)
    print([A339762(n) for n in range(1, 11)])