A335569 a(n) is the maximum height achieved in the Collatz ('3x+1') problem when starting from numbers in the range [2^n, 2^(n+1)).
0, 7, 16, 19, 111, 112, 118, 127, 143, 178, 181, 237, 261, 275, 307, 339, 353, 442, 469, 524, 556, 596, 664, 704, 705, 949, 950, 956, 964, 986, 1008, 1050, 1131, 1210, 1219, 1220, 1234, 1307, 1321
Offset: 0
Examples
a(35) = 1220 is the smallest term having 3 start values achieving maximum height: 63389366646, 63389366647, 64375365601. - _Bert Dobbelaere_, Feb 13 2021
Programs
-
Mathematica
collatz[n_] := If[EvenQ[n], n/2, 3n+1] height[n_] := Length[NestWhileList[collatz, n, #!=1&]] - 1 a335569[n_] := Max[Map[height, Range[2^n, 2^(n+1)-1]]] (* sequence data; long computation times for n >= 22 *) Map[a335569, Range[0, 27]]
Extensions
a(28)-a(38) from Bert Dobbelaere, Feb 13 2021
Comments