cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339778 Numbers m such that numbers m, m + 1 and m + 2 have k, 2k and 3k divisors respectively.

Original entry on oeis.org

61, 73, 277, 421, 458, 493, 583, 1234, 1393, 1418, 1658, 1909, 1954, 2066, 2138, 2234, 2329, 2386, 2533, 2594, 2773, 2797, 2846, 3013, 3073, 3265, 3394, 3841, 4322, 4333, 4538, 4586, 4633, 4717, 4754, 4766, 5029, 5223, 5245, 5342, 5378, 5554, 5893, 5906, 6169
Offset: 1

Views

Author

Jaroslav Krizek, Dec 16 2020

Keywords

Comments

Numbers m such that tau(m) = tau(m + 1) / 2 = tau(m + 2) / 3, where tau(k) = the number of divisors of k (A000005).
Corresponding values of tau(a(n)): 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, ...
Triplets of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2)] = [tau(a(n)), 2*tau(a(n)), 3*tau(a(n))]: [2, 4, 6], [2, 4, 6], [2, 4, 6], [2, 4, 6], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], [4, 8, 12], ...

Examples

			tau(61) = 2, tau(62) = 4, tau(63) = 6.
		

Crossrefs

Subsequence of A063446.

Programs

  • Magma
    [m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 3]
    
  • Mathematica
    Select[Range[6000], Equal @@ (DivisorSigma[0, # + {0, 1, 2}]/{1, 2, 3}) &] (* Amiram Eldar, Dec 16 2020 *)
  • PARI
    isok(m) = my(nb = numdiv(m)); (numdiv(m+1) == 2*nb) && (numdiv(m+2) == 3*nb); \\ Michel Marcus, Dec 18 2020