A339778 Numbers m such that numbers m, m + 1 and m + 2 have k, 2k and 3k divisors respectively.
61, 73, 277, 421, 458, 493, 583, 1234, 1393, 1418, 1658, 1909, 1954, 2066, 2138, 2234, 2329, 2386, 2533, 2594, 2773, 2797, 2846, 3013, 3073, 3265, 3394, 3841, 4322, 4333, 4538, 4586, 4633, 4717, 4754, 4766, 5029, 5223, 5245, 5342, 5378, 5554, 5893, 5906, 6169
Offset: 1
Keywords
Examples
tau(61) = 2, tau(62) = 4, tau(63) = 6.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 3]
-
Mathematica
Select[Range[6000], Equal @@ (DivisorSigma[0, # + {0, 1, 2}]/{1, 2, 3}) &] (* Amiram Eldar, Dec 16 2020 *)
-
PARI
isok(m) = my(nb = numdiv(m)); (numdiv(m+1) == 2*nb) && (numdiv(m+2) == 3*nb); \\ Michel Marcus, Dec 18 2020
Comments