A339780 Triangle read by rows: T(n,k) is the number of homeomorphically irreducible leaf colored trees with n leaves using exactly k colors.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 7, 9, 4, 0, 3, 24, 63, 68, 26, 0, 7, 91, 412, 812, 720, 236, 0, 13, 354, 2673, 8512, 13100, 9672, 2752, 0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208, 0, 73, 6504, 117365, 814184, 2782970, 5194580, 5408620, 2953792, 660032
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 2, 7, 9, 4; 0, 3, 24, 63, 68, 26; 0, 7, 91, 412, 812, 720, 236; 0, 13, 354, 2673, 8512, 13100, 9672, 2752; 0, 32, 1491, 17571, 84312, 199820, 248904, 156492, 39208; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Virginia Perkins Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. South Carolina, 2012.
Crossrefs
Programs
-
PARI
\\ here U(n,k) is A339779 as vector. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v} U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + k*x*g - g^2)} M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))} { my(T=M(8)); for(n=1, #T~, print(T[n,1..n])); }
Comments