A220833 Erroneous version of A339782.
2, 11, 28, 109, 470, 2145, 10300, 51135, 260930, 1359391
Offset: 1
Keywords
Links
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Array begins: ============================================================ n\k| 0 1 2 3 4 5 6 7 ---+-------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 0 1 2 3 4 5 6 7 ... 2 | 0 1 3 6 10 15 21 28 ... 3 | 0 1 4 10 20 35 56 84 ... 4 | 0 2 11 36 90 190 357 616 ... 5 | 0 3 30 144 476 1251 2814 5656 ... 6 | 0 7 105 706 3034 9845 26383 61572 ... 7 | 0 13 380 3774 21380 85995 274800 744556 ... 8 | 0 32 1555 22140 163670 812160 3086481 9692480 ... 9 | 0 73 6650 137096 1322960 8092945 36550458 132954360 ... ...
\\ here R(n,k) is k-th column of A319254. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v} U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + k*x*g - g^2)} {my(T=Mat(vector(9, k, U(8, k-1)~))); for(n=1, #T~, print(T[n, ]))}
my(N=25); (U(N,2)-2*U(N,1))[2..1+N] \\ See A339780 for U(n,k).
my(N=25); (U(N,3) - 3*U(N,2) + 3*U(N,1))[2..1+N] \\ See A339780 for U(n, k).
Comments