A339797 Number of (undirected) Hamiltonian paths in the graph C_3 X C_n.
756, 4128, 18240, 73368, 277536, 1001760, 3512160, 12009480, 40390944, 133893936, 439304736, 1428450072, 4613176800, 14809528896, 47315578848, 150534443304, 477237381024, 1508232832080, 4753573999776, 14945425070136, 46886868887136, 146802927436128, 458818252975200
Offset: 3
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 3..50
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Eric Weisstein's World of Mathematics, Torus Grid Graph
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_CnXCk(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) grids.append((i + (n - 1) * k, i)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) grids.append((i + k - 1, i)) return grids def A(start, goal, n, k): universe = make_CnXCk(n, k) GraphSet.set_universe(universe) paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() def B(n, k): m = k * n s = 0 for i in range(1, m): for j in range(i + 1, m + 1): s += A(i, j, n, k) return s def A339797(n): return B(n, 3) print([A339797(n) for n in range(3, 10)])