A339798 Number of (undirected) Hamiltonian paths in the graph C_4 X C_n.
4128, 45696, 287160, 2172480, 11866848, 76468352, 390714840, 2301083680, 11288784144, 62812654272, 299720429528, 1604776566400, 7505573487360, 39105991164160, 180179056818584, 920223907284960, 4191443432295472, 21088555826121280, 95195388883597464, 473503955161244480
Offset: 3
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 3..50
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Eric Weisstein's World of Mathematics, Torus Grid Graph
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_CnXCk(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) grids.append((i + (n - 1) * k, i)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) grids.append((i + k - 1, i)) return grids def A(start, goal, n, k): universe = make_CnXCk(n, k) GraphSet.set_universe(universe) paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() def B(n, k): m = k * n s = 0 for i in range(1, m): for j in range(i + 1, m + 1): s += A(i, j, n, k) return s def A339798(n): return B(n, 4) print([A339798(n) for n in range(3, 10)])