A339817 Squarefree numbers k > 1 for which the 2-adic valuation of phi(k) does not exceed the 2-adic valuation of k-1.
2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 33, 37, 41, 43, 47, 53, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 89, 93, 97, 101, 103, 107, 109, 113, 127, 129, 131, 133, 137, 139, 141, 145, 149, 151, 157, 161, 163, 167, 173, 177, 179, 181, 191, 193, 197, 199, 201, 209, 211, 213, 217, 223, 227, 229, 233, 237, 239, 241
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..21695
- D. H. Lehmer, On Euler's totient function, Bulletin of the American Mathematical Society, 38 (1932), 745-751.
- Wikipedia, Lehmer's totient problem.
Crossrefs
Programs
-
Mathematica
Select[Range[2, 250], SquareFreeQ[#] && IntegerExponent[EulerPhi[#], 2] <= IntegerExponent[# - 1, 2] &] (* Amiram Eldar, Feb 17 2021 *)
-
PARI
isA339817(n) = ((n>1)&&issquarefree(n)&&(valuation(eulerphi(n),2)<=valuation(n-1,2)));
Comments