cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A016105 Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).

Original entry on oeis.org

21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, 201, 209, 213, 217, 237, 249, 253, 301, 309, 321, 329, 341, 381, 393, 413, 417, 437, 453, 469, 473, 489, 497, 501, 517, 537, 553, 573, 581, 589, 597, 633, 649, 669, 681, 713, 717, 721, 737, 749, 753, 781, 789
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A084109. - Ralf Stephan and David W. Wilson, Apr 17 2005
Subsequence of A046388. - Altug Alkan, Dec 10 2015
Subsequence of A339817. No common terms with A339870. - Antti Karttunen, Dec 26 2020
Named after the Venezuelan-American computer scientist Manuel Blum (b. 1938). - Amiram Eldar, Jun 06 2021
First introduced by Blum, Blum, & Shub for the generation of pseudorandom numbers and later applied (by Manuel Blum and other authors) to zero-knowledge proofs. - Charles R Greathouse IV, Sep 26 2024

References

  • Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudorandom number generator, SIAM Journal on computing 15:2 (1986), pp. 364-383.

Crossrefs

Intersection of A005117 and A107978.
Also, subsequence of the following sequences: A046388, A084109, A091113, A167181, A339817.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a016105 n = a016105_list !! (n-1)
    a016105_list = f [3,7] (drop 2 a002145_list) 21 (singleton 21) where
       f qs (p:p':ps) t s
         | m < t     = m : f qs (p:p':ps) t s'
         | otherwise = m : f (p:qs) (p':ps) t' (s' `union` (fromList pqs))
         where (m,s') = deleteFindMin s
               t' = head $ dropWhile (> 3*p') pqs
               pqs = map (p *) qs
    -- Reinhard Zumkeller, Sep 23 2011
    
  • Maple
    N:= 10000: # to get all terms <= N
    Primes:= select(isprime, [seq(i,i=3..N/3,4)]):
    S:=select(`<=`,{seq(seq(Primes[i]*Primes[j],i=1..j-1),j=2..nops(Primes))},N):
    sort(convert(S,list)); # Robert Israel, Dec 11 2015
  • Mathematica
    With[{upto = 820}, Select[Union[Times@@@Subsets[ Select[Prime[Range[ PrimePi[ NextPrime[upto/3]]]], Mod[#, 4] == 3 &], {2}]], # <= upto &]] (* Harvey P. Dale, Aug 19 2011 *)
    Select[4Range[5, 197] + 1, PrimeNu[#] == 2 && MoebiusMu[#] == 1 && Mod[FactorInteger[#][[1, 1]], 4] != 1 &] (* Alonso del Arte, Nov 18 2015 *)
  • PARI
    list(lim)=my(P=List(),v=List(),t,p); forprimestep(p=3,lim\3,4, listput(P,p)); for(i=2,#P, p=P[i]; for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 01 2016, updated Sep 26 2024
    
  • PARI
    isA016105(n) = (2==omega(n)&&2==bigomega(n)&&1==(n%4)&&3==((factor(n)[1,1])%4)); \\ Antti Karttunen, Dec 26 2020
    
  • Perl
    use ntheory ":all"; forcomposites { say if ($ % 4) == 1 && is_square_free($) && scalar(factor($)) == 2 && !scalar(grep { ($ % 4) != 3 } factor($)); } 10000; # _Dana Jacobsen, Dec 10 2015
    
  • Python
    from sympy import factorint
    def ok(n):
        fn = factorint(n)
        return len(fn) == sum(fn.values()) == 2 and all(f%4 == 3 for f in fn)
    print([k for k in range(790) if ok(k)]) # Michael S. Branicky, Dec 20 2021

Formula

a(n) = A195758(n) * A195759(n). - Reinhard Zumkeller, Sep 23 2011
a(n) ~ 4n log n/log log n. - Charles R Greathouse IV, Sep 17 2022

Extensions

More terms from Erich Friedman

A339870 Composite numbers k of the form 4u+1 for which the odd part of phi(k) divides k-1.

Original entry on oeis.org

85, 561, 1105, 1261, 1285, 2465, 4369, 6601, 8245, 8481, 9061, 9605, 10585, 16405, 16705, 17733, 18721, 19669, 21845, 23001, 28645, 30889, 38165, 42121, 43165, 46657, 54741, 56797, 57205, 62745, 65365, 74593, 78013, 83665, 88561, 91001, 106141, 117181, 124645, 126701, 134521, 136981, 141661, 162401, 171205, 176437
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

From Antti Karttunen, Dec 26 2020: (Start)
Equally, squarefree composite numbers k of the form 4u+1 for which A336466(k) divides k-1. This follows because on squarefree n, A336466(n) = A053575(n).
No common terms with A016105, because 4xy + 2(x+y) + 1 does not divide 4xy + 3(x+y) + 2 for any distinct x, y >= 0 (where 4x+3 and 4y+3 are the two prime factors of Blum integers).
This can also seen by another way: If this sequence contained any Blum integers, then, because A016105 is a subsequence of A339817, we would have found a composite number n satisfying Lehmer's totient problem y * phi(n) = n-1, for some integer y > 1. But Lehmer proved that such solutions should have at least 7 distinct prime factors, while Blum integers have only two.
Moreover, it seems that none of the terms of A167181 may occur here, and a few of A137409 (i.e., of A125667). See A339875 for those terms.
(End)

Examples

			85 = 4*21 + 1 = 5*17, thus phi(85) = 4*16 = 64, the odd part of which is A000265(64) = 1, which certainly divides 85-1, therefore 85 is included as a term.
561 = 4*140 + 1 = 3*11*17, thus phi(561) = 2*10*16 = 320, the odd part of which is A000265(320) = 5, which divides 560, therefore 561 is included.
		

Crossrefs

Subsequence of A005117.
Intersection of A091113 and A339880.
Cf. A339875 (a subsequence).
Cf. also comments in A339817.

Programs

  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[4*Range[45000] + 1, CompositeQ[#] && Divisible[# - 1, odd[EulerPhi[#]]] &] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA339870(n) = ((n>1)&&!isprime(n)&&(1==(n%4))&&!((n-1)%A000265(eulerphi(n))));

A339880 Odd composite numbers k such that A053575(k) [the odd part of phi] divides k-1.

Original entry on oeis.org

15, 51, 85, 91, 255, 435, 451, 561, 595, 771, 1105, 1261, 1285, 1351, 1695, 2091, 2431, 2465, 3655, 3855, 4369, 4795, 5083, 5151, 5383, 6601, 6643, 6735, 7051, 8245, 8481, 8695, 8911, 8995, 9061, 9605, 10585, 11155, 13107, 15051, 15211, 16405, 16705, 17733, 18721, 19669, 20451, 21845, 22359, 23001, 26335, 28645
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2020

Keywords

Comments

No common terms with A016105. See A339870 for the reason. - Antti Karttunen, Dec 26 2020

Crossrefs

Subsequence of A005117 and of A339879, and of A340077.
Cf. A339869, A339870 (subsequences).
Cf. also A002997, A053576, A339817.

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA339880(n) = (bitand(n,1)&&(n>1)&&!isprime(n)&&!((n-1)%A000265(eulerphi(n))));

A339816 Numbers k for which A339814(k) >= A339822(k).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 12, 14, 16, 18, 21, 32, 64, 65, 68, 72, 84, 128, 129, 132, 136, 138, 141, 145, 159, 170, 192, 204, 208, 256, 258, 261, 324, 385, 448, 462, 512, 513, 515, 516, 520, 536, 576, 578, 581, 640, 705, 723, 776, 908, 912, 1024, 1036, 1040, 1049, 1160, 1172, 1280, 1352, 1537, 1600, 1609, 1666, 1732, 1795, 2048
Offset: 1

Views

Author

Antti Karttunen, Dec 19 2020

Keywords

Comments

Terms of (1/2)*A048675(A339817(i)), for i = 2.., sorted into ascending order.
First occurrences of terms with binary weight (A000120) w = 1..19 are at n=1, 4, 8, 23, 50, 25, 125, 136, 176, 502, 749, 1142, 791, 1882, 2913, 4327, 17979, 16991, 12441. The terms themselves are: 1, 5, 14, 141, 908, 159, 8921, 9948, 18390, 175449, 400237, 1223389, 441805, 3234271, 28743379, 53892047, 1631024969, 1331412056, 725475951.

Crossrefs

Positions of zeros and negative terms in A339815.
Cf. A000079 (a subsequence).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA339816(n) = { my(x=A019565(2*n)); (valuation(eulerphi(x),2)<=valuation(x-1,2)); };

A339818 Carmichael numbers k for which the 2-adic valuation of phi(k) does not exceed the 2-adic valuation of k-1.

Original entry on oeis.org

1729, 15841, 3057601, 3828001, 5310721, 8355841, 8830801, 9439201, 14676481, 15829633, 17236801, 40280065, 78091201, 83099521, 84350561, 92625121, 94536001, 104852881, 118901521, 129762001, 157731841, 163954561, 180115489, 193708801, 214852609, 221884001, 279377281, 382304161, 382536001, 438359041, 481239361, 511338241
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2020

Keywords

Crossrefs

Intersection of A002997 and A339817 (see comments in latter).
Cf. also A339869, A339878, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[n_] := IntegerExponent[EulerPhi[n], 2] <= IntegerExponent[n - 1, 2]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
  • PARI
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    isA339818(n) = ((n>1)&&issquarefree(n)&&!isprime(n)&&(valuation(eulerphi(n),2)<=valuation(n-1,2))&&(0==((n-1)%A002322(n))));

A339879 Numbers k for which k-1 is a multiple of A053575(k) [the odd part of phi(k)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 23, 24, 28, 29, 30, 31, 32, 34, 37, 40, 41, 43, 47, 48, 51, 52, 53, 59, 60, 61, 64, 66, 67, 68, 70, 71, 73, 79, 80, 83, 85, 89, 91, 96, 97, 101, 102, 103, 107, 109, 112, 113, 120, 127, 128, 130, 131, 136, 137, 139, 149, 151, 157, 160, 163, 167, 170, 173, 176, 179
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2020

Keywords

Crossrefs

Subsequences: A000040, and A339880 (odd composite terms), A339869, A339870.
Cf. also comments in A339817.

Programs

A339907 Odd squarefree numbers k > 1 for which the bigomega(phi(k)) <= bigomega(k-1), where bigomega gives the number of prime divisors, counted with multiplicity.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 33, 37, 41, 43, 47, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 129, 131, 137, 139, 141, 145, 149, 151, 157, 161, 163, 167, 173, 177, 179, 181, 191, 193, 197, 199, 201, 209, 211, 217, 223, 227, 229, 233, 235, 239, 241, 249, 251, 253, 257
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2020

Keywords

Comments

Terms of A003961(A019565(A339906(i))) [or equally, of A019565(2*A339906(i))], for i = 1.., sorted into ascending order.
Natural numbers n > 2 that satisfy equation k * phi(n) = n - 1 (for some integer k) all occur in this sequence. Lehmer conjectured that there are no composite solutions.

Crossrefs

Cf. A339906.
Cf. A065091, A339908 (subsequences).
Cf. also A339817.
Apart from initial 3, a subsequence of A339910.

Programs

  • PARI
    isA339907(n) = ((n>1)&&(n%2)&&issquarefree(n)&&(bigomega(eulerphi(n))<=bigomega(n-1)));

A339819 Squarefree numbers k > 1 for which neither 2-adic nor 3-adic valuation of phi(k) exceeds the corresponding valuation of k-1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 33, 37, 41, 43, 47, 53, 59, 61, 67, 69, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 141, 145, 149, 151, 157, 163, 167, 173, 177, 179, 181, 191, 193, 197, 199, 211, 213, 217, 223, 227, 229, 233, 239, 241, 249, 251, 253, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2020

Keywords

Crossrefs

Subsequence of A339817.

Programs

  • PARI
    isA339819(n) = ((n>1)&&issquarefree(n)&&(valuation(eulerphi(n),2)<=valuation(n-1,2))&&(valuation(eulerphi(n),3)<=valuation(n-1,3)));

A339871 Number of primes p for which the p-adic valuation of phi(n) exceeds the p-adic valuation of n-1, with a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 0, 2, 2, 1, 0, 2, 0, 2, 2, 2, 0, 1, 1, 2, 1, 1, 0, 2, 2, 2, 1, 2, 0, 1, 0, 3, 2, 1, 1, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 2, 2, 2, 0, 1, 1, 2, 0, 2, 1, 3, 2, 2, 0, 2, 1, 2, 2, 2, 2, 1, 0, 3, 3, 2, 0, 1, 0, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2020

Keywords

Crossrefs

Programs

  • PARI
    A339871(n) = if(1==n,0,my(s=0); for(k=1,n,my(p=prime(k)); if(valuation(eulerphi(n),p)>valuation(n-1,p), s++)); (s));
    
  • PARI
    A339871(n) = if(1==n,0,my(f=factor(eulerphi(n))); sum(i=1,#f~,f[i,2]>valuation(n-1,f[i,1])));
    
  • PARI
    A339871(n) = omega(eulerphi(n)/gcd(n-1,eulerphi(n)));

Formula

a(n) = A001221(A160595(n)).
a(n) <= A055734(n).

A339872 Index k of the least prime(k) such that prime(k)-adic valuation of phi(n) exceeds the prime(k)-adic valuation of n-1, or 0 if no such k exists (for example, when n = 1 or a prime).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 3, 1, 2, 1, 0, 1, 0, 1, 3, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 5, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2020

Keywords

Crossrefs

Programs

  • PARI
    A339872(n) = if(1==n,0,for(k=1,n,my(p=prime(k)); if(valuation(eulerphi(n),p)>valuation(n-1,p), return(k))); (0));
    
  • PARI
    A339872(n) = if(1==n,0,my(f=factor(eulerphi(n))); for(i=1,#f~,if(f[i,2]>valuation(n-1,f[i,1]), return(primepi(f[i,1])))); (0));
    
  • PARI
    A339872(n) = { my(t=eulerphi(n), x=t/gcd(n-1,t)); if(1==x,0,primepi(factor(x)[1, 1])); };

Formula

a(n) = A055396(A160595(n)).
Showing 1-10 of 11 results. Next