A339836 Number of bicolored graphs on n unlabeled nodes such that every white node is adjacent to a black node.
1, 1, 3, 10, 47, 296, 2970, 49604, 1484277, 81494452, 8273126920, 1552510549440, 538647737513260, 346163021846858368, 413301431190875322768, 920040760819708654610560, 3832780109273882704828352620, 29989833030101321999992097828464, 442280129125813382230656891568680400
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..40
- Eric Weisstein's World of Mathematics, Dominating Set
Crossrefs
Programs
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} dom(u, v) = {prod(i=1, #u, 2^sum(j=1, #v, gcd(u[i], v[j]))-1)} U(nb,nw)={my(s=0); forpart(u=nw, my(t=0); forpart(v=nb, t += permcount(v) * 2^edges(v) * dom(u,v)); s += t*permcount(u) * 2^edges(u)/nb!); s/nw!} a(n)={sum(k=0, n, U(k, n-k))}
Comments