cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339836 Number of bicolored graphs on n unlabeled nodes such that every white node is adjacent to a black node.

Original entry on oeis.org

1, 1, 3, 10, 47, 296, 2970, 49604, 1484277, 81494452, 8273126920, 1552510549440, 538647737513260, 346163021846858368, 413301431190875322768, 920040760819708654610560, 3832780109273882704828352620, 29989833030101321999992097828464, 442280129125813382230656891568680400
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form a dominating set. For n > 0, a(n) is then the total number of indistinguishable dominating sets summed over distinct unlabeled graphs on n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A339832, A339834 (trees), A340021.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    dom(u, v) = {prod(i=1, #u, 2^sum(j=1, #v, gcd(u[i], v[j]))-1)}
    U(nb,nw)={my(s=0); forpart(u=nw, my(t=0); forpart(v=nb, t += permcount(v) * 2^edges(v) * dom(u,v)); s += t*permcount(u) * 2^edges(u)/nb!); s/nw!}
    a(n)={sum(k=0, n, U(k, n-k))}