A339839 Number of factorizations of n into distinct primes or semiprimes.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 0, 2, 4, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 4, 1, 1, 0, 2, 1, 5, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 2, 0, 1, 2, 2, 2, 1, 4, 1, 2, 4
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 6, 16, 30, 60, 180, 210, 240, 420: 6 5*6 4*15 4*5*9 6*35 4*6*10 2*6*35 2*3 2*15 6*10 2*6*15 10*21 2*4*5*6 3*4*35 3*10 2*5*6 2*9*10 14*15 2*3*4*10 4*5*21 2*3*5 3*4*5 3*4*15 5*6*7 4*7*15 2*3*10 3*6*10 2*3*35 5*6*14 2*3*5*6 2*5*21 6*7*10 2*7*15 2*10*21 3*5*14 2*14*15 3*7*10 2*5*6*7 2*3*5*7 3*10*14 3*4*5*7 2*3*5*14 2*3*7*10
Links
Crossrefs
A008966 allows only primes.
A320732 is the non-strict version.
A339742 does not allow squares of primes.
A339840 lists the positions of zeros.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A322353 into distinct semiprimes.
- A339839 [this sequence] into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]],{n,100}]
-
PARI
A339839(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA339839(n/d, d))); (s)); \\ Antti Karttunen, Feb 10 2023
Formula
a(n) = Sum_{d|n squarefree} A322353(n/d).
Extensions
Data section extended up to a(105) by Antti Karttunen, Feb 10 2023
Comments