A339858 Middle side of integer-sided primitive triangles whose sides a < b < c form a geometric progression.
6, 12, 20, 30, 35, 40, 42, 56, 63, 70, 77, 72, 88, 90, 99, 117, 126, 110, 130, 132, 143, 154, 165, 176, 187, 156, 204, 228, 182, 195, 208, 221, 234, 247, 260, 273, 210, 238, 266, 240, 255, 285, 330, 345, 272, 304, 336, 368, 400, 306, 323, 340, 357, 374, 391, 408, 425, 442, 459
Offset: 1
Keywords
Examples
a(1) = 6 only for the smallest such triangle (4, 6, 9) with 6^2 = 4*9 and a ratio q = 3/2. a(2) = 12 only for the triangle (9, 12, 16) with 12^2 = 9*16 and a ratio q = 4/3.
Links
- Project Euler, Problem 370: Geometric triangles.
Crossrefs
Programs
-
Maple
for a from 1 to 300 do for b from a+1 to floor((1+sqrt(5))/2 *a) do for c from b+1 to floor((1+sqrt(5))/2 *b) do k:=a*c; if k=b^2 and igcd(a, b, c)=1 then print(b); end if; end do; end do; end do;
-
PARI
lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a, b, c])==1), print1(b, ", "); ); ); ); );} \\ Michel Marcus, Dec 30 2020
Formula
a(n) = A339856 (n, 2).
Comments