A339859 Largest side of integer-sided primitive triangles whose sides a < b < c form a geometric progression.
9, 16, 25, 36, 49, 64, 49, 64, 81, 100, 121, 81, 121, 100, 121, 169, 196, 121, 169, 144, 169, 196, 225, 256, 289, 169, 289, 361, 196, 225, 256, 289, 324, 361, 400, 441, 225, 289, 361, 256, 289, 361, 484, 529, 289, 361, 441, 529, 625, 324, 361, 400, 441, 484, 529, 576
Offset: 1
Keywords
Examples
a(1) = 9 for only the smallest such triangle (4, 6, 9) with 6^2 = 4*9, this one corresponds to an obtuse triangle because sqrt(phi) < q = 3/2 < phi, hence C > Pi/2. a(3) = 25 for only the triple (16, 20, 25) with 16 * 25 = 20^2, this one corresponds to an acute triangle because 1 < q = 5/4 < sqrt(phi), hence C < Pi/2.
Links
- Project Euler, Problem 370: Geometric triangles.
Crossrefs
Programs
-
Maple
for a from 1 to 300 do for b from a+1 to floor((1+sqrt(5))/2 *a) do for c from b+1 to floor((1+sqrt(5))/2 *b) do k:=a*c; if k=b^2 and igcd(a, b, c)=1 then print(c); end if; end do; end do; end do;
-
PARI
lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a, b, c])==1), print1(c, ", "); ); ); ); ); } \\ Michel Marcus, Jan 07 2021
Formula
a(n) = A339856(n, 3).
Comments