A339856 Primitive triples for integer-sided triangles whose sides a < b < c form a geometric progression.
4, 6, 9, 9, 12, 16, 16, 20, 25, 25, 30, 36, 25, 35, 49, 25, 40, 64, 36, 42, 49, 49, 56, 64, 49, 63, 81, 49, 70, 100, 49, 77, 121, 64, 72, 81, 64, 88, 121, 81, 90, 100, 81, 99, 121, 81, 117, 169, 81, 126, 196, 100, 110, 121, 100, 130, 169, 121, 132, 144, 121, 143, 169
Offset: 1
Examples
The smallest such triangle is (4, 6, 9) with 4*9 = 6^2. There exist four triangles with small side = 49 corresponding to triples (49, 56, 64), (49, 63, 81), (49, 70, 100) and (49, 77, 121). The table begins: 4, 6, 9; 9, 12, 16; 16, 20, 25; 25, 30, 36; 25, 35, 49; 25, 40, 64; 36, 42, 49; ...
Links
- David A. Corneth, Table of n, a(n) for n = 1..10002
- Project Euler, Problem 370: Geometric Triangles.
Crossrefs
Programs
-
Maple
for a from 1 to 300 do for b from a+1 to floor((1+sqrt(5))/2 * a) do for c from b+1 to floor((1+sqrt(5))/2 * b) do k:=a*c; if k=b^2 and igcd(a,b,c)=1 then print(a,b,c); end if; end do; end do; end do;
-
PARI
lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a,b,c])==1), print([a,b,c])););););} \\ Michel Marcus, Dec 25 2020
-
PARI
upto(n) = my(res=List(), phi = (sqrt(5)+1) / 2); for(i = 2, sqrtint(n), for(j = i+1, (i*phi)\1, if(gcd(i, j)==1, listput(res, [i^2, i*j, j^2])))); concat(Vec(res)) \\ David A. Corneth, Dec 25 2020
Extensions
Data corrected by David A. Corneth, Dec 25 2020
Comments