A339878 Carmichael numbers k such that phi(k) divides p*(k - 1) for some prime factor p of k - 1.
1729, 3069196417, 23915494401, 1334063001601, 6767608320001, 33812972024833, 1584348087168001, 1602991137369601, 6166793784729601, 1531757211193440001, 84388996672599528001
Offset: 1
Links
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- Thomas Ordowski and Amiram Eldar, A new look at the Lehmer's totient problem, SeqFan, February 10 2019.
Programs
-
Mathematica
carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[n_] := Module[{p = FactorInteger[n - 1][[;; , 1]], phi = EulerPhi[n]}, AnyTrue[(n - 1)*p, Divisible[#, phi] &]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
Extensions
a(10) from Amiram Eldar, Dec 26 2020
a(11) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 21 2024
Comments