cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145362 Lower triangular array S1hat(-1) read by rows, related to partition number array A145361.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If in the partition array M31hat(-1):=A145361 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(-1). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first column is [1,1,0,0,0,...]=A008279(1,n-1), n>=1.
T(n,m) gives the number of partitions of n with m parts, with each part not exceeding 2. - Wolfdieter Lang, Aug 03 2023

Examples

			Triangle begins:
  [1];
  [1,1];
  [0,1,1];
  [0,1,1,1];
  [0,0,1,1,1];
  [0,0,1,1,1,1];
  ...
		

Crossrefs

Cf. A004526(n+2), n>=1, (row sums).
Cf. A008275, A008279, A008284, A036039, A145361, A339884 (parts <=3), A232539 (parts <=4).

Programs

Formula

T(n,m) = Sum_{q=1..p(n,m)} Product_{j=1..n} S1(-1;j,1)^e(n,m,q,j) if n>=m>=1, else 0. Here p(n,m) = A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S1(-1;n,1) = A008279(1,n-1) = [1,1,0,0,0,...], n>=1.
The triangle starts in row n with ceiling(n/2) - 1 zeros, and is 1 otherwise. - Wolfdieter Lang, Aug 03 2023
G.f.: 1/((1-u*t)*(1-u*t^2)). [Comtet page 97 [2c]]. - R. J. Mathar, May 27 2025

A232539 Triangle read by rows: T(n,k) = number of partitions of n into at most four parts in which the largest part is equal to k, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 0, 3, 4, 4, 3, 2, 1, 1, 0, 0, 0, 2, 5, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 7, 5, 4, 3, 2, 1, 1
Offset: 0

Views

Author

L. Edson Jeffery, Jan 02 2014

Keywords

Comments

Also number of partitions of n into k parts with parts in the range 1..4.

Examples

			Triangle T{n,k} begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 2, 1, 1;
  0, 0, 2, 2, 1, 1;
  0, 0, 2, 3, 2, 1, 1;
  0, 0, 1, 3, 3, 2, 1, 1;
  0, 0, 1, 3, 4, 3, 2, 1, 1;
  0, 0, 0, 3, 4, 4, 3, 2, 1, 1;
  ...
		

Crossrefs

Cf. A001400 (row sums), A219237, A233292 (row partial sums), A145362 (parts <=2), A339884 (parts <=3).

Programs

  • Maple
    maxp := 4 :
    gf := 1/mul(1-u*t^i,i=1..maxp) :
    for n from 0 to 13 do
        for m from 0 to n do
            coeftayl(gf,t=0,n) ;
            coeftayl(%,u=0,m) ;
            printf("%d ",%);
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 27 2025

Formula

G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)*(1-u*t^4)). - [Comtet p. 97 [2c]]. - R. J. Mathar, May 27 2025
Showing 1-2 of 2 results.