cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A155091 Triangle read by rows. Signed version of A145362. Main diagonal positive, rest of the nonzero terms negative.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 0, -1, -1, 1, 0, 0, -1, -1, 1, 0, 0, -1, -1, -1, 1, 0, 0, 0, -1, -1, -1, 1, 0, 0, 0, -1, -1, -1, -1, 1, 0, 0, 0, 0, -1, -1, -1, -1, 1, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 0, 0, -1, -1
Offset: 1

Views

Author

Mats Granvik, Jan 20 2009

Keywords

Comments

Matrix inverse of this triangle is A155092.

Examples

			Table begins:
1,
-1,1,
0,-1,1,
0,-1,-1,1,
0,0,-1,-1,1,
0,0,-1,-1,-1,1,
0,0,0,-1,-1,-1,1,
0,0,0,-1,-1,-1,-1,1,
0,0,0,0,-1,-1,-1,-1,1,
0,0,0,0,-1,-1,-1,-1,-1,1,
		

Crossrefs

Cf. A145362.

A145361 Characteristic partition array for partitions with parts 1 and 2 only.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

Each partition of n, ordered like in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to 1 if the partition has parts 1 or 2 only and to 0 otherwise.
First member (K=1) in the family M31hat(-K) of partition number arrays.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
This array is array A144357 divided entrywise by the array M_3=M3(1)=A036040. Formally 'A144357/A036040'. E.g. a(4,3)= 1 = 3/3 = A144357(4,3)/A036040(4,3).
If M31hat(-1;n,k) is summed over those k numerating partitions with fixed number of parts m one obtains the unsigned triangle S1hat(-1):= A145362 .

Examples

			Triangle begins:
  [1];
  [1,1];
  [0,1,1];
  [0,0,1,1,1];
  [0,0,0,0,1,1,1];
  ...
a(4,3)= 1 = S1(-1;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A145363 (M31hat(-2)).

Formula

a(n,k) = product(S1(-1;j,1)^e(n,k,j),j=1..n) with S1(-1;n,1) = A008279(1,n-1) = [1,1,0,0,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.

A232539 Triangle read by rows: T(n,k) = number of partitions of n into at most four parts in which the largest part is equal to k, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 0, 3, 4, 4, 3, 2, 1, 1, 0, 0, 0, 2, 5, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 7, 5, 4, 3, 2, 1, 1
Offset: 0

Views

Author

L. Edson Jeffery, Jan 02 2014

Keywords

Comments

Also number of partitions of n into k parts with parts in the range 1..4.

Examples

			Triangle T{n,k} begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 2, 1, 1;
  0, 0, 2, 2, 1, 1;
  0, 0, 2, 3, 2, 1, 1;
  0, 0, 1, 3, 3, 2, 1, 1;
  0, 0, 1, 3, 4, 3, 2, 1, 1;
  0, 0, 0, 3, 4, 4, 3, 2, 1, 1;
  ...
		

Crossrefs

Cf. A001400 (row sums), A219237, A233292 (row partial sums), A145362 (parts <=2), A339884 (parts <=3).

Programs

  • Maple
    maxp := 4 :
    gf := 1/mul(1-u*t^i,i=1..maxp) :
    for n from 0 to 13 do
        for m from 0 to n do
            coeftayl(gf,t=0,n) ;
            coeftayl(%,u=0,m) ;
            printf("%d ",%);
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 27 2025

Formula

G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)*(1-u*t^4)). - [Comtet p. 97 [2c]]. - R. J. Mathar, May 27 2025

A339884 Triangle read by rows: T(n, m) gives the number of partitions of n with m parts and parts from {1, 2, 3}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 0, 2, 2, 2, 1, 1, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 1, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 2, 4, 3, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 31 2021

Keywords

Comments

Row sums give A001399(n), for n >= 1.
One could add the column [1,repeat 0] for m = 0 starting with n >= 0.

Examples

			The triangle T(n,m) begins:
  n\m  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
  1:   1
  2:   1 1
  3:   1 1 1
  4:   0 2 1 1
  5:   0 1 2 1 1
  6:   0 1 2 2 1 1
  7:   0 0 2 2 2 1 1
  8:   0 0 1 3 2 2 1 1
  9:   0 0 1 2 3 2 2 1 1
  10:  0 0 0 2 3 3 2 2 1  1
  11:  0 0 0 1 3 3 3 2 2  1  1
  12:  0 0 0 1 2 4 3 3 2  2  1  1
  13:  0 0 0 0 2 3 4 3 3  2  2  1  1
  14:  0 0 0 0 1 3 4 4 3  3  2  2  1  1
  15:  0 0 0 0 1 2 4 4 4  3  3  2  2  1  1
  16:  0 0 0 0 0 2 3 5 4  4  3  3  2  2  1  1
  17:  0 0 0 0 0 1 3 4 5  4  4  3  3  2  2  1  1
  18:  0 0 0 0 0 1 2 4 5  5  4  4  3  3  2  2  1  1
  19:  0 0 0 0 0 0 2 3 5  5  5  4  4  3  3  2  2  1  1
  20:  0 0 0 0 0 0 1 3 4  6  5  5  4  4  3  3  2  2  1  1
  ...
Row n = 6: the partitions of 6 with number of parts m = 1,2, ...., 6, and parts from {1,2,3} are (in Abramowitz-Stegun order): [] | [],[],[3,3] | [],[1,2,3],[2^3] | [1^3,3],[1^2,2^2] | [1^4,2] | 1^6, giving 0, 1, 2, 2, 1, 1.
		

Crossrefs

Cf. A001399, A008284 (all parts), A145362 (parts 1, 2), A232539 (parts <=4), A291983.
Compositions: A007818, A030528 (parts 1, 2), A078803 (parts 1, 2, 3).

Formula

Sum_{k=0..n} (-1)^k * T(n,k) = A291983(n). - Alois P. Heinz, Feb 01 2021
G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)). [Comtet page 97 [2c]]. - R. J. Mathar, May 27 2025
Showing 1-4 of 4 results.