A339885 Triangle read by rows: T(n, m) gives the sum of the weights of weighted partitions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}.
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 0, -1, -1, 0, 1, 1, 1, 1, 0, -1, -2, -1, 0, 1, 1, 1, 1, 0, 1, -1, -2, 0, 0, 1, 1, 1, 1, 0, 0, 0, -2, -2, 0, 0, 1, 1, 1, 1
Offset: 1
Examples
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... A341417 ---------------------------------------------------------------------------- 1: 1 1 2: 1 1 2 3: 0 1 1 2 4: 0 1 1 1 3 5: -1 0 1 1 1 2 6: 0 -1 1 1 1 1 3 7: -1 -1 -1 1 1 1 1 1 8: 0 -1 -1 0 1 1 1 1 2 9: 0 -1 -2 -1 0 1 1 1 1 0 10: 0 1 -1 -2 0 0 1 1 1 1 2 11: 0 0 0 -2 -2 0 0 1 1 1 1 0 12: 1 1 1 0 -2 -1 0 0 1 1 1 1 4 13: 0 1 1 0 -1 -2 -1 0 0 1 1 1 1 2 14: 0 2 2 2 0 -1 -1 -1 0 0 1 1 1 1 7 15: 1 0 1 2 1 -1 -1 -1 -1 0 0 1 1 1 1 5 16: 0 1 2 2 3 1 -1 0 -1 -1 0 0 1 1 1 1 10 17: 0 0 0 1 2 2 0 -1 0 -1 -1 0 0 1 1 1 1 6 18: 0 0 0 2 2 3 2 0 0 0 -1 -1 0 0 1 1 1 1 11 19: 0 -1 -1 -1 1 2 2 1 0 0 0 -1 -1 0 0 1 1 1 1 5 20: 0 -1 -1 0 1 2 3 2 1 1 0 0 -1 -1 0 0 1 1 1 1 10 ... n = 5: (Partition; weight w) with | separating same m numbers (in Abramowitz -Stegun order): (5;-1) | (1,4;0), (2,3;0) | (1^2,3;0), (1,2^2;1) | (1^3,2;1) | (1^5;1), hence row n=5 is [-1, 0, 1, 1, 1] from the sum of same m weights.
Comments