A339887 Number of factorizations of n into primes or squarefree semiprimes.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 1, 5, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 36, 60, 180, 360, 420, 840: 6*6 6*10 5*6*6 6*6*10 2*6*35 6*10*14 2*3*6 2*5*6 2*6*15 2*5*6*6 5*6*14 2*2*6*35 2*2*3*3 2*2*15 3*6*10 2*2*6*15 6*7*10 2*5*6*14 2*3*10 2*3*5*6 2*3*6*10 2*10*21 2*6*7*10 2*2*3*5 2*2*3*15 2*2*3*5*6 2*14*15 2*2*10*21 2*3*3*10 2*2*2*3*15 2*5*6*7 2*2*14*15 2*2*3*3*5 2*2*3*3*10 3*10*14 2*2*5*6*7 2*2*2*3*3*5 2*2*3*35 2*3*10*14 2*2*5*21 2*2*2*3*35 2*2*7*15 2*2*2*5*21 2*3*5*14 2*2*2*7*15 2*3*7*10 2*2*3*5*14 2*2*3*5*7 2*2*3*7*10 2*2*2*3*5*7
Links
Crossrefs
Programs
-
Mathematica
sqpe[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqpe[n/d],Min@@#>=d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; Table[Length[sqpe[n]],{n,100}]
Comments