A122848 Exponential Riordan array (1, x(1+x/2)).
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 0 3 1 0 0 3 6 1 0 0 0 15 10 1 0 0 0 15 45 15 1 0 0 0 0 105 105 21 1 0 0 0 0 105 420 210 28 1 0 0 0 0 0 945 1260 378 36 1 From _Gus Wiseman_, Jan 12 2021: (Start) As noted above, a(n) is the number of set partitions of {1..n} into k singletons or pairs. This is also the number of set partitions of subsets of {1..n} into n - k pairs. In the first case, row n = 5 counts the following set partitions: {{1},{2,3},{4,5}} {{1},{2},{3},{4,5}} {{1},{2},{3},{4},{5}} {{1,2},{3},{4,5}} {{1},{2},{3,4},{5}} {{1,2},{3,4},{5}} {{1},{2,3},{4},{5}} {{1,2},{3,5},{4}} {{1,2},{3},{4},{5}} {{1},{2,4},{3,5}} {{1},{2},{3,5},{4}} {{1},{2,5},{3,4}} {{1},{2,4},{3},{5}} {{1,3},{2},{4,5}} {{1},{2,5},{3},{4}} {{1,3},{2,4},{5}} {{1,3},{2},{4},{5}} {{1,3},{2,5},{4}} {{1,4},{2},{3},{5}} {{1,4},{2},{3,5}} {{1,5},{2},{3},{4}} {{1,4},{2,3},{5}} {{1,4},{2,5},{3}} {{1,5},{2},{3,4}} {{1,5},{2,3},{4}} {{1,5},{2,4},{3}} In the second case, we have: {{1,2},{3,4}} {{1,2}} {} {{1,2},{3,5}} {{1,3}} {{1,2},{4,5}} {{1,4}} {{1,3},{2,4}} {{1,5}} {{1,3},{2,5}} {{2,3}} {{1,3},{4,5}} {{2,4}} {{1,4},{2,3}} {{2,5}} {{1,4},{2,5}} {{3,4}} {{1,4},{3,5}} {{3,5}} {{1,5},{2,3}} {{4,5}} {{1,5},{2,4}} {{1,5},{3,4}} {{2,3},{4,5}} {{2,4},{3,5}} {{2,5},{3,4}} (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Bala, Generalized Dobinski formulas
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras
- H. Han and S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat. 29 (7) (2008) 1544-1554. [From _R. J. Mathar_, Mar 20 2009]
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 18.
- S. Yang and Z. Qiao, The Bessel Numbers and Bessel Matrices, Journal of Mathematical Research & Exposition, July, 2011, Vol. 31, No. 4, pp. 627-636. [From _Tom Copeland_, Dec 18 2013]
Crossrefs
Row sums are A000085.
Column sums are A001515.
Same as A049403 but with a first column k = 0.
The same set partitions counted by number of pairs are A100861.
Reversing rows gives A111924 (without column k = 0).
A047884 counts standard Young tableaux by size and greatest row length.
A238123 counts standard Young tableaux by size and least row length.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 27 2016
-
Mathematica
t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Second program: *) rows = 12; t = Join[{1, 1}, Table[0, rows]]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 23 2018,after Peter Luschny *) sbs[{}]:={{}};sbs[set:{i_,_}]:=Join@@Function[s,(Prepend[#1,s]&)/@sbs[Complement[set,s]]]/@Cases[Subsets[set],{i}|{i,_}]; Table[Length[Select[sbs[Range[n]],Length[#]==k&]],{n,0,6},{k,0,n}] (* Gus Wiseman, Jan 12 2021 *)
-
PARI
{T(n,k)=if(2*k
n, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */ -
Sage
# uses[inverse_bell_transform from A265605] multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1)) inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015
Formula
Number triangle T(n,k) = k!*C(n,k)/((2k-n)!*2^(n-k)).
T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006
E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012
Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014
From Daniel Checa, Aug 28 2022: (Start)
E.g.f. for the m-th column: (x^2/2+x)^m/m!.
T(n,k) = T(n-1,k-1) + (n-1)*T(n-2,k-1) for n>1 and k=1..n, T(0,0) = 1. (End)
Comments