A339888 Number of non-isomorphic multiset partitions of weight n into singletons or strict pairs.
1, 1, 3, 5, 13, 23, 55, 104, 236, 470, 1039, 2140, 4712, 9962, 21961, 47484, 105464, 232324, 521338, 1167825, 2651453, 6031136, 13863054, 31987058, 74448415, 174109134, 410265423, 971839195, 2317827540, 5558092098, 13412360692, 32542049038, 79424450486
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(4) = 13 multiset partitions: {{1}} {{1,2}} {{1},{2,3}} {{1,2},{1,2}} {{1},{1}} {{2},{1,2}} {{1,2},{3,4}} {{1},{2}} {{1},{1},{1}} {{1,3},{2,3}} {{1},{2},{2}} {{1},{1},{2,3}} {{1},{2},{3}} {{1},{2},{1,2}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{2},{2},{1,2}} {{1},{1},{1},{1}} {{1},{1},{2},{2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} gs(v) = {sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i], v[j])); g*x^(2*v[i]*v[j]/g))) + sum(i=1, #v, my(r=v[i]); (1 + (1+r)%2)*x^r + ((r-1)\2)*x^(2*r))} a(n)={if(n==0, 1, my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(gs(p) + O(x*x^n), -n))[n]); s/n!)} \\ Andrew Howroyd, Apr 16 2021
Extensions
Terms a(11) and beyond from Andrew Howroyd, Apr 16 2021