cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A340075 The odd part of A340072(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 5, 3, 1, 3, 1, 5, 3, 27, 1, 5, 1, 9, 5, 3, 1, 9, 7, 1, 25, 15, 1, 3, 1, 81, 3, 9, 15, 15, 1, 11, 1, 27, 1, 5, 1, 9, 5, 7, 1, 27, 11, 21, 9, 3, 1, 25, 1, 45, 11, 15, 1, 9, 1, 9, 25, 243, 3, 3, 1, 27, 7, 3, 1, 45, 1, 5, 21, 33, 15, 1, 1, 81, 125, 21, 1, 15, 9, 23, 15, 27, 1, 15, 5, 21, 9, 13, 33, 81
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Each term a(n) is a multiple of A340149(n), therefore, as both sequences have only positive terms, it follows that if a(n) = 1 then A340149(n) = 1 also, but not necessarily vice versa.

Crossrefs

Cf. A000265, A003961, A019565, A339901, A339904, A340072, A340074, A340076 (positions of ones), A340149 (differs from the first time at n=85).

Programs

Formula

a(n) = A000265(A340072(n)).
a(n) = A339904(n) / A340074(n) = A339904(n) / gcd(A003961(n)-1, A339904(n)).
For all n >= 0, a(A019565(n)) = A339901(n).

A340085 a(n) = A336466(n) / gcd(n-1, A336466(n)); Odd part of A340082(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 9, 3, 1, 1, 3, 1, 5, 1, 11, 1, 1, 3, 1, 1, 1, 1, 1, 5, 3, 9, 7, 1, 1, 1, 15, 3, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 9, 1, 3, 15, 3, 1, 1, 1, 5, 1, 3, 1, 21, 7, 5, 1, 1, 1, 11, 15, 23, 9, 1, 1, 9, 5, 1, 1, 1, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[#1 - 1, #2] & @@ {#, Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]]} &, 105] (* Michael De Vlieger, Dec 29 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A340085(n) = { my(u=A336466(n)); u/gcd(n-1, u); };

Formula

a(n) = A000265(A340082(n)).
a(n) = A336466(n) / A340084(n) = A336466(n) / gcd(n-1, A336466(n)).
For all n >= 0, a(A003961(A019565(n))) = a(A019565(2*n)) = A339901(n).

A339898 a(n) = A019565(2n)-1 mod A000265(phi(A019565(2n))).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 2, 0, 2, 4, 4, 1, 5, 9, 14, 0, 2, 1, 2, 0, 2, 4, 5, 7, 8, 9, 14, 10, 32, 9, 29, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 4, 4, 3, 11, 4, 14, 1, 2, 0, 2, 7, 5, 3, 2, 0, 2, 4, 14, 6, 20, 34, 14, 0, 2, 4, 5, 24, 20, 16, 23, 28, 41, 9, 29, 112, 68, 24, 74, 3, 11, 19, 5, 27, 2, 58, 14, 16, 50, 84, 119, 388, 356
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A339973 (positions of zeros).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339898(n) = { my(x=A019565(2*n)); ((x-1)%A000265(eulerphi(x))); };

Formula

a(n) = A339809(2*n) modulo A339971(n), where A339971(n) = A053575(A019565(2n)).

A339899 a(n) = gcd(A019565(2n)-1, A000265(phi(A019565(2n)))).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 15, 1, 1, 1, 3, 5, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 3, 1, 3, 1, 1, 1, 27, 1, 1, 1, 1, 5, 3, 1, 1, 1, 81, 1, 1, 1, 3, 1, 1, 1, 9, 1, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339899(n) = { my(x=A019565(2*n)); gcd((x-1),A000265(eulerphi(x))); };

Formula

a(n) = gcd(A339809(2*n), A339971(n)), where A339971(n) = A053575(A019565(2n)).
a(n) = gcd(A339971(n), A339898(n)).
a(n) = A339971(n) / A339901(n).
a(n) = A000265(A049559(A019565(2*n))).

A339973 Numbers k for which A019565(2k)-1 is a multiple of A000265(phi(A019565(2k))).

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 16, 20, 32, 33, 34, 35, 38, 41, 50, 56, 64, 128, 176, 256, 259, 290, 512, 1024, 2048, 2056, 2081, 2089, 2096, 2180, 4096, 4130, 8192, 9218, 16384, 18436, 32768, 65536, 131072, 131140, 262144, 279552, 524288, 524308, 524546, 1048576, 1048736, 2097152, 4194304, 4194352, 4194420, 4196656, 4202499, 8388608
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Comments

Numbers k such that A339971(k) divides A339809(2k).
Union of {0}, A000079 and the terms of (1/2)*A048675(A339880(i)), for i >= 1, sorted into ascending order.

Crossrefs

Positions of zeros in A339898, and of ones in A339901.
Cf. A000079 (subsequence).
Cf. also A339816, A339906.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA339971(n) = { my(x=A019565(2*n)); !((x-1)%A000265(eulerphi(x))); };

A340086 a(1) = 0, for n > 1, a(n) = A000265(n-1) / gcd(n-1, A336466(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 7, 57, 1, 59, 1, 61, 31, 63, 1, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

From the second term onward, the odd part of A340083.

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A000265(n-1) / A340084(n) = A000265(A340083(n)).

A339972 Odd part of phi(A019565(8*n)).

Original entry on oeis.org

1, 3, 5, 15, 3, 9, 15, 45, 1, 3, 5, 15, 3, 9, 15, 45, 9, 27, 45, 135, 27, 81, 135, 405, 9, 27, 45, 135, 27, 81, 135, 405, 11, 33, 55, 165, 33, 99, 165, 495, 11, 33, 55, 165, 33, 99, 165, 495, 99, 297, 495, 1485, 297, 891, 1485, 4455, 99, 297, 495, 1485, 297, 891, 1485, 4455, 7, 21, 35, 105, 21, 63, 105, 315, 7, 21
Offset: 0

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Comments

Compare also to the scatter plots of A339898 and A339901.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A339972(n) = { my(m=1, p=5); while(n>0, p = nextprime(1+p); if(n%2, m *= A000265(p-1)); n >>= 1); (m); };

Formula

If 16n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A057023(e1) * A057023(e2) * ... * A057023(ek).
a(n) = A339971(4*n) = A000265(A339821(4*n)) = A053575(A019565(8*n)).
Showing 1-7 of 7 results.