cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A340076 Positions of ones in A340075.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 23, 26, 29, 31, 37, 39, 41, 43, 47, 53, 55, 59, 61, 67, 71, 73, 78, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 138, 139, 149, 151, 157, 163, 167, 173, 179, 181, 182, 191, 193, 195, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 259, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

Subsequence of A340150 from which this differs for the first time at n=98, as this lacks the term 445 which is present in A340076.
If one applies prime shift (A003961) to each term, and then sorts the results into the ascending order, one gets A340077.

Crossrefs

Subsequence of A340150.

Programs

A339901 a(n) = A339971(n) / gcd(A339809(2*n), A339971(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 15, 3, 5, 15, 1, 3, 3, 3, 1, 9, 9, 9, 15, 15, 5, 15, 9, 45, 5, 45, 1, 1, 1, 1, 3, 3, 1, 3, 5, 1, 5, 5, 5, 15, 15, 15, 3, 3, 1, 3, 9, 9, 3, 9, 1, 15, 15, 15, 15, 9, 45, 45, 1, 9, 9, 9, 9, 27, 27, 27, 45, 45, 5, 45, 135, 135, 45, 135, 9, 27, 27, 27, 3, 81, 81, 81, 135, 27, 45, 135, 405
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Compare also to the scatter plot of A339898.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339901(n) = { my(x=A019565(2*n), y=A000265(eulerphi(x))); y/gcd((x-1),y); };

Formula

a(n) = A339971(n) / A339899(n).
a(n) = A000265(A160595(A019565(2*n))).
a(n) = A340075(A019565(n)) = A340085(A019565(2*n)).

A340072 a(n) = phi(x) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 9, 5, 3, 1, 6, 1, 5, 12, 27, 1, 20, 1, 18, 20, 12, 1, 36, 7, 16, 25, 30, 1, 6, 1, 81, 3, 9, 15, 15, 1, 11, 16, 27, 1, 20, 1, 18, 20, 28, 1, 54, 11, 42, 36, 12, 1, 100, 4, 45, 44, 15, 1, 72, 1, 36, 100, 243, 48, 48, 1, 54, 7, 12, 1, 180, 1, 40, 42, 66, 60, 64, 1, 162, 125, 21, 1, 120, 9, 23, 60, 108
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160595.

Crossrefs

Cf. A000010, A003961, A003972, A160595, A253885, A340071, A340073, A340075 (gives the odd part).
Cf. also A340082.

Programs

  • Maple
    f:= proc(n) local F,x,p,t;
      F:= ifactors(n)[2];
      x:= mul(nextprime(t[1])^t[2],t=F);
      p:= numtheory:-phi(x);
      p/igcd(x-1,p)
    end proc:
    map(f,[$1..100]); # Robert Israel, Dec 28 2020
  • Mathematica
    a[n_] := Module[{x, p, e, phi}, x = Product[{p, e} = pe; NextPrime[p]^e, {pe, FactorInteger[n]}]; phi = EulerPhi[x]; phi/GCD[x-1, phi]];
    Array[a, 100] (* Jean-François Alcover, Jan 04 2022 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340072(n) = { my(x=A003961(n), u=eulerphi(x)); u/gcd(x-1, u); };

Formula

a(n) = A160595(A003961(n)).
a(n) = A003972(n) / A340071(n).

A340149 Odd part of A340147: a(n) = A000265(A247074(A003961(n))).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 5, 3, 1, 3, 1, 5, 3, 27, 1, 5, 1, 9, 5, 3, 1, 9, 7, 1, 25, 15, 1, 3, 1, 81, 3, 9, 15, 15, 1, 11, 1, 27, 1, 5, 1, 9, 5, 7, 1, 27, 11, 21, 9, 3, 1, 25, 1, 45, 11, 15, 1, 9, 1, 9, 25, 243, 3, 3, 1, 27, 7, 3, 1, 45, 1, 5, 21, 33, 15, 1, 1, 81, 125, 21, 1, 15, 3, 23, 15, 27, 1, 15, 5, 21, 9, 13, 33
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

Each term a(n) is a divisor of A340075(n), at n=85 occurs the first proper divisor.

Crossrefs

Cf. A000265, A003961, A247074, A340147, A340150 (positions of ones).
Differs from related A340075 for the first time at n=85, where a(85) = 3, while A340075(85) = 9.

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
    A340149(n) = A000265(A247074(A003961(n)));

Formula

A339904 The odd part of {Euler totient function phi applied to the prime shifted n}: a(n) = A000265(A000010(A003961(n))).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 9, 5, 3, 3, 3, 1, 5, 3, 27, 9, 5, 11, 9, 5, 3, 7, 9, 21, 1, 25, 15, 15, 3, 9, 81, 3, 9, 15, 15, 5, 11, 1, 27, 21, 5, 23, 9, 15, 7, 13, 27, 55, 21, 9, 3, 29, 25, 9, 45, 11, 15, 15, 9, 33, 9, 25, 243, 3, 3, 35, 27, 7, 15, 9, 45, 39, 5, 21, 33, 15, 1, 41, 81, 125, 21, 11, 15, 27, 23, 15, 27, 3, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A339904(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,my(q=nextprime(1+f[i,1])); A000265(q-1)*(q^(f[i,2]-1))));
    
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A339903(n) = A000265(eulerphi(A003961(n)));

Formula

Multiplicative with a(p^e) = A000265(q-1) * q^(e-1), where q = A151800(p), the next prime larger than p.
For all squarefree numbers k, a(k) = A339903(k).

A340077 Odd numbers k for which k-1 is a multiple of A053575(k) [the odd part of phi(k)].

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 71, 73, 79, 83, 85, 89, 91, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 255, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

Sequence A003961(A340076(i)), i = 1.., sorted into ascending order. In other words, this sequence consists of such odd numbers k that A064989(k) is in A340076.

Crossrefs

Subsequence of A339879.
Subsequences: A065091, A339880 (composite terms), A339869, A339870 (and their further subsequences).

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA340077(n) = ((n%2)&&!((n-1)%A000265(eulerphi(n))));
    
  • PARI
    A064989(n) = { my(f=factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    isA340077(n) = ((n%2)&&(1==A340075(A064989(n)))); \\ Needs also code from A340075.

A340091 Odd numbers k such that A064989(k) is in A340151.

Original entry on oeis.org

679, 703, 1387, 1729, 1891, 2047, 2509, 2701, 2821, 3277, 3367, 5551, 7471, 7735, 8119, 8827, 9997, 10963, 11305, 12403, 13021, 13747, 13981, 14491, 14701, 15841, 16471, 17563, 19951, 21349, 21907, 21931, 22015, 23959, 24727, 25669, 26281, 27511, 28939, 29341, 31417, 32407, 38503, 39091, 39831, 39865, 40501, 41041
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Sequence A003961(A340151(i)), for i >= 1, sorted into ascending order.
By definition, this has no common terms with A340077 nor any of its subsequences like A339869 or A339880.

Crossrefs

Cf. A340092 (Carmichael numbers in this sequence).

Programs

A340074 a(n) = gcd(A003961(n)-1, A339904(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 11, 1, 1, 1, 7, 1, 3, 1, 1, 1, 15, 1, 9, 1, 1, 1, 1, 1, 5, 1, 1, 1, 21, 1, 23, 1, 3, 1, 13, 1, 5, 1, 1, 1, 29, 1, 9, 1, 1, 1, 15, 1, 33, 1, 1, 1, 1, 1, 35, 1, 1, 5, 9, 1, 39, 1, 1, 1, 1, 1, 41, 1, 1, 1, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 25, 1, 3, 1, 51, 1, 53, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

Odd part of A340071(n).

Crossrefs

Programs

Formula

a(n) = gcd(A003961(n)-1, A339904(n)).
a(n) = A000265(A340071(n)).
a(n) = A339904(n) / A340075(n).

A340151 Setwise difference A340150 \ A340076.

Original entry on oeis.org

445, 527, 935, 1207, 1577, 1595, 1705, 1711, 2101, 2145, 2201, 2507, 3245, 3315, 4895, 6045, 6631, 6931, 7511, 8371, 9707, 9845, 10189, 10295, 10505, 11023, 11895, 12137, 12194, 13145, 13571, 13845, 14101, 14245, 15042, 15281, 16235, 16643, 17355, 17701, 18559, 19567, 20119, 20865, 22703, 23347, 25123, 26581, 27101, 27695
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

Positions k where A340149(k) = 1, but A340075(k) > 1.

Crossrefs

Setwise difference A340150 \ A340076.
Cf. A340091 (gives the same terms prime shifted once and sorted into ascending order).

Programs

Showing 1-9 of 9 results.