cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340074 a(n) = gcd(A003961(n)-1, A339904(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 11, 1, 1, 1, 7, 1, 3, 1, 1, 1, 15, 1, 9, 1, 1, 1, 1, 1, 5, 1, 1, 1, 21, 1, 23, 1, 3, 1, 13, 1, 5, 1, 1, 1, 29, 1, 9, 1, 1, 1, 15, 1, 33, 1, 1, 1, 1, 1, 35, 1, 1, 5, 9, 1, 39, 1, 1, 1, 1, 1, 41, 1, 1, 1, 11, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 25, 1, 3, 1, 51, 1, 53, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

Odd part of A340071(n).

Crossrefs

Programs

Formula

a(n) = gcd(A003961(n)-1, A339904(n)).
a(n) = A000265(A340071(n)).
a(n) = A339904(n) / A340075(n).

A340075 The odd part of A340072(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 5, 3, 1, 3, 1, 5, 3, 27, 1, 5, 1, 9, 5, 3, 1, 9, 7, 1, 25, 15, 1, 3, 1, 81, 3, 9, 15, 15, 1, 11, 1, 27, 1, 5, 1, 9, 5, 7, 1, 27, 11, 21, 9, 3, 1, 25, 1, 45, 11, 15, 1, 9, 1, 9, 25, 243, 3, 3, 1, 27, 7, 3, 1, 45, 1, 5, 21, 33, 15, 1, 1, 81, 125, 21, 1, 15, 9, 23, 15, 27, 1, 15, 5, 21, 9, 13, 33, 81
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Each term a(n) is a multiple of A340149(n), therefore, as both sequences have only positive terms, it follows that if a(n) = 1 then A340149(n) = 1 also, but not necessarily vice versa.

Crossrefs

Cf. A000265, A003961, A019565, A339901, A339904, A340072, A340074, A340076 (positions of ones), A340149 (differs from the first time at n=85).

Programs

Formula

a(n) = A000265(A340072(n)).
a(n) = A339904(n) / A340074(n) = A339904(n) / gcd(A003961(n)-1, A339904(n)).
For all n >= 0, a(A019565(n)) = A339901(n).

A339903 Fully multiplicative with a(p) = A000265(q-1), where q = A151800(p), the next prime > p.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 1, 1, 3, 3, 1, 1, 5, 3, 1, 9, 1, 11, 3, 5, 3, 7, 1, 9, 1, 1, 5, 15, 3, 9, 1, 3, 9, 15, 1, 5, 11, 1, 3, 21, 5, 23, 3, 3, 7, 13, 1, 25, 9, 9, 1, 29, 1, 9, 5, 11, 15, 15, 3, 33, 9, 5, 1, 3, 3, 35, 9, 7, 15, 9, 1, 39, 5, 9, 11, 15, 1, 41, 3, 1, 21, 11, 5, 27, 23, 15, 3, 3, 3, 5, 7, 9, 13, 33, 1, 25, 25
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A339903(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1] = nextprime(1+f[i,1])-1); A000265(factorback(f)));

Formula

For all squarefree numbers k, a(k) = A339904(k).

A340091 Odd numbers k such that A064989(k) is in A340151.

Original entry on oeis.org

679, 703, 1387, 1729, 1891, 2047, 2509, 2701, 2821, 3277, 3367, 5551, 7471, 7735, 8119, 8827, 9997, 10963, 11305, 12403, 13021, 13747, 13981, 14491, 14701, 15841, 16471, 17563, 19951, 21349, 21907, 21931, 22015, 23959, 24727, 25669, 26281, 27511, 28939, 29341, 31417, 32407, 38503, 39091, 39831, 39865, 40501, 41041
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Comments

Sequence A003961(A340151(i)), for i >= 1, sorted into ascending order.
By definition, this has no common terms with A340077 nor any of its subsequences like A339869 or A339880.

Crossrefs

Cf. A340092 (Carmichael numbers in this sequence).

Programs

Showing 1-4 of 4 results.