cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A340075 The odd part of A340072(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 9, 5, 3, 1, 3, 1, 5, 3, 27, 1, 5, 1, 9, 5, 3, 1, 9, 7, 1, 25, 15, 1, 3, 1, 81, 3, 9, 15, 15, 1, 11, 1, 27, 1, 5, 1, 9, 5, 7, 1, 27, 11, 21, 9, 3, 1, 25, 1, 45, 11, 15, 1, 9, 1, 9, 25, 243, 3, 3, 1, 27, 7, 3, 1, 45, 1, 5, 21, 33, 15, 1, 1, 81, 125, 21, 1, 15, 9, 23, 15, 27, 1, 15, 5, 21, 9, 13, 33, 81
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Each term a(n) is a multiple of A340149(n), therefore, as both sequences have only positive terms, it follows that if a(n) = 1 then A340149(n) = 1 also, but not necessarily vice versa.

Crossrefs

Cf. A000265, A003961, A019565, A339901, A339904, A340072, A340074, A340076 (positions of ones), A340149 (differs from the first time at n=85).

Programs

Formula

a(n) = A000265(A340072(n)).
a(n) = A339904(n) / A340074(n) = A339904(n) / gcd(A003961(n)-1, A339904(n)).
For all n >= 0, a(A019565(n)) = A339901(n).

A340071 a(n) = gcd(A003961(n)-1, phi(A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 2, 4, 2, 6, 2, 10, 2, 4, 4, 12, 4, 16, 4, 2, 2, 18, 2, 22, 2, 2, 2, 28, 2, 6, 2, 4, 2, 30, 8, 36, 2, 16, 4, 4, 8, 40, 4, 4, 4, 42, 4, 46, 4, 6, 2, 52, 4, 10, 2, 2, 8, 58, 2, 18, 4, 2, 4, 60, 2, 66, 2, 2, 2, 2, 2, 70, 2, 16, 10, 72, 2, 78, 2, 4, 2, 2, 2, 82, 2, 4, 4, 88, 2, 12, 4, 2, 2, 96, 4, 2, 4, 8, 2, 4, 2, 100
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A049559.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340071(n) = { my(u=A003961(n)); gcd(u-1, eulerphi(u)); };

Formula

a(n) = A049559(A003961(n)).
a(n) = gcd(A253885(n-1), A003972(n)) = gcd(A003961(n)-1, A000010(A003961(n))).
a(n) = A003972(n) / A340072(n).
For n > 1, a(n) = (A003961(n)-1) / A340073(n).

A340082 a(n) = A003958(n) / gcd(n-1, A003958(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 4, 1, 1, 4, 1, 4, 3, 10, 1, 2, 2, 12, 4, 2, 1, 8, 1, 1, 5, 16, 12, 4, 1, 18, 12, 4, 1, 12, 1, 10, 4, 22, 1, 2, 3, 16, 16, 4, 1, 8, 20, 6, 9, 28, 1, 8, 1, 30, 12, 1, 3, 4, 1, 16, 11, 8, 1, 4, 1, 36, 16, 6, 15, 24, 1, 4, 1, 40, 1, 12, 16, 42, 28, 10, 1, 16, 4, 22, 15, 46, 36, 2, 1, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A003958, A340081, A340083, A340085 (gives the odd part).
Cf. also A160595, A340072.

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340082(n) = { my(u=A003958(n)); u/gcd(n-1, u); };

Formula

a(n) = A003958(n) / A340081(n) = A003958(n) / gcd(n-1, A003958(n)).

A340073 a(n) = (x-1) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 13, 6, 5, 1, 11, 1, 8, 17, 40, 1, 37, 1, 31, 27, 19, 1, 67, 8, 25, 31, 49, 1, 13, 1, 121, 4, 14, 19, 28, 1, 17, 21, 47, 1, 41, 1, 29, 29, 43, 1, 101, 12, 73, 47, 19, 1, 187, 5, 74, 57, 23, 1, 157, 1, 55, 137, 364, 59, 97, 1, 85, 9, 23, 1, 337, 1, 61, 61, 103, 71, 127, 1, 283, 156, 32, 1, 247, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160596.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340073(n) = { my(x=A003961(n)); (x-1)/gcd(x-1, eulerphi(x)); };

Formula

a(n) = A160596(A003961(n)).
a(n) = A253885(n-1) / A340071(n) = (A003961(n)-1) / A340071(n).

A340147 a(n) = A247074(A003961(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 9, 5, 3, 1, 3, 1, 5, 6, 27, 1, 10, 1, 9, 10, 6, 1, 18, 7, 8, 25, 15, 1, 3, 1, 81, 3, 9, 15, 15, 1, 11, 4, 27, 1, 5, 1, 9, 10, 14, 1, 27, 11, 21, 18, 6, 1, 50, 2, 45, 22, 15, 1, 18, 1, 18, 50, 243, 24, 12, 1, 27, 7, 3, 1, 90, 1, 20, 21, 33, 30, 16, 1, 81, 125, 21, 1, 30, 3, 23, 30, 54, 1, 15, 40, 21
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

Prime shifted analog of A247074.
Each term a(n) is a divisor of A340072(n).

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A247074(n) = { my(f=factor(n)); eulerphi(f)/prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); }; \\ From A247074
    A340147(n) = A247074(A003961(n));

Formula

a(n) = A247074(A003961(n)).
a(n) = A003972(n) / A340148(n).
Showing 1-5 of 5 results.