cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340071 a(n) = gcd(A003961(n)-1, phi(A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 2, 4, 2, 6, 2, 10, 2, 4, 4, 12, 4, 16, 4, 2, 2, 18, 2, 22, 2, 2, 2, 28, 2, 6, 2, 4, 2, 30, 8, 36, 2, 16, 4, 4, 8, 40, 4, 4, 4, 42, 4, 46, 4, 6, 2, 52, 4, 10, 2, 2, 8, 58, 2, 18, 4, 2, 4, 60, 2, 66, 2, 2, 2, 2, 2, 70, 2, 16, 10, 72, 2, 78, 2, 4, 2, 2, 2, 82, 2, 4, 4, 88, 2, 12, 4, 2, 2, 96, 4, 2, 4, 8, 2, 4, 2, 100
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A049559.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340071(n) = { my(u=A003961(n)); gcd(u-1, eulerphi(u)); };

Formula

a(n) = A049559(A003961(n)).
a(n) = gcd(A253885(n-1), A003972(n)) = gcd(A003961(n)-1, A000010(A003961(n))).
a(n) = A003972(n) / A340072(n).
For n > 1, a(n) = (A003961(n)-1) / A340073(n).

A340072 a(n) = phi(x) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 9, 5, 3, 1, 6, 1, 5, 12, 27, 1, 20, 1, 18, 20, 12, 1, 36, 7, 16, 25, 30, 1, 6, 1, 81, 3, 9, 15, 15, 1, 11, 16, 27, 1, 20, 1, 18, 20, 28, 1, 54, 11, 42, 36, 12, 1, 100, 4, 45, 44, 15, 1, 72, 1, 36, 100, 243, 48, 48, 1, 54, 7, 12, 1, 180, 1, 40, 42, 66, 60, 64, 1, 162, 125, 21, 1, 120, 9, 23, 60, 108
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160595.

Crossrefs

Cf. A000010, A003961, A003972, A160595, A253885, A340071, A340073, A340075 (gives the odd part).
Cf. also A340082.

Programs

  • Maple
    f:= proc(n) local F,x,p,t;
      F:= ifactors(n)[2];
      x:= mul(nextprime(t[1])^t[2],t=F);
      p:= numtheory:-phi(x);
      p/igcd(x-1,p)
    end proc:
    map(f,[$1..100]); # Robert Israel, Dec 28 2020
  • Mathematica
    a[n_] := Module[{x, p, e, phi}, x = Product[{p, e} = pe; NextPrime[p]^e, {pe, FactorInteger[n]}]; phi = EulerPhi[x]; phi/GCD[x-1, phi]];
    Array[a, 100] (* Jean-François Alcover, Jan 04 2022 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340072(n) = { my(x=A003961(n), u=eulerphi(x)); u/gcd(x-1, u); };

Formula

a(n) = A160595(A003961(n)).
a(n) = A003972(n) / A340071(n).

A340083 a(n) = (n-1) / gcd(n-1, A003958(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 2, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 8, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 4, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 63, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89, 5, 91, 23
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340083(n) = ((n-1)/gcd(n-1, A003958(n)));

Formula

a(n) = (n-1) / A340081(n) = (n-1) / gcd(n-1, A003958(n)).
Showing 1-3 of 3 results.