cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340081 a(n) = gcd(n-1, A003958(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 1, 22, 1, 8, 1, 2, 3, 28, 1, 30, 1, 4, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 46, 1, 12, 1, 2, 3, 52, 1, 2, 1, 4, 1, 58, 1, 60, 1, 2, 1, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 3, 4, 1, 78, 1, 16, 1, 82, 1, 4, 1, 2, 1, 88, 1, 18, 1, 4, 1, 2, 1, 96, 1, 2, 1, 100
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340081(n) = gcd(n-1, A003958(n));

Formula

a(n) = gcd(n-1, A003958(n)).
a(n) = A003958(n) / A340082(n).
For n > 1, a(n) = (n-1) / A340083(n).

A340082 a(n) = A003958(n) / gcd(n-1, A003958(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 4, 1, 1, 4, 1, 4, 3, 10, 1, 2, 2, 12, 4, 2, 1, 8, 1, 1, 5, 16, 12, 4, 1, 18, 12, 4, 1, 12, 1, 10, 4, 22, 1, 2, 3, 16, 16, 4, 1, 8, 20, 6, 9, 28, 1, 8, 1, 30, 12, 1, 3, 4, 1, 16, 11, 8, 1, 4, 1, 36, 16, 6, 15, 24, 1, 4, 1, 40, 1, 12, 16, 42, 28, 10, 1, 16, 4, 22, 15, 46, 36, 2, 1, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A003958, A340081, A340083, A340085 (gives the odd part).
Cf. also A160595, A340072.

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340082(n) = { my(u=A003958(n)); u/gcd(n-1, u); };

Formula

a(n) = A003958(n) / A340081(n) = A003958(n) / gcd(n-1, A003958(n)).

A340073 a(n) = (x-1) / gcd(x-1, phi(x)), where x = A003961(n), i.e., n with its prime factorization shifted one step towards larger primes.

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 13, 6, 5, 1, 11, 1, 8, 17, 40, 1, 37, 1, 31, 27, 19, 1, 67, 8, 25, 31, 49, 1, 13, 1, 121, 4, 14, 19, 28, 1, 17, 21, 47, 1, 41, 1, 29, 29, 43, 1, 101, 12, 73, 47, 19, 1, 187, 5, 74, 57, 23, 1, 157, 1, 55, 137, 364, 59, 97, 1, 85, 9, 23, 1, 337, 1, 61, 61, 103, 71, 127, 1, 283, 156, 32, 1, 247, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Prime shifted analog of A160596.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A340073(n) = { my(x=A003961(n)); (x-1)/gcd(x-1, eulerphi(x)); };

Formula

a(n) = A160596(A003961(n)).
a(n) = A253885(n-1) / A340071(n) = (A003961(n)-1) / A340071(n).

A340086 a(1) = 0, for n > 1, a(n) = A000265(n-1) / gcd(n-1, A336466(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 1, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 1, 49, 25, 17, 1, 53, 27, 55, 7, 57, 1, 59, 1, 61, 31, 63, 1, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

From the second term onward, the odd part of A340083.

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A000265(n-1) / A340084(n) = A000265(A340083(n)).
Showing 1-4 of 4 results.