A339909 Carmichael numbers k for which bigomega(phi(k)) < bigomega(k-1), where bigomega gives the number of prime divisors, counted with multiplicity.
1729, 14676481, 84350561, 90698401, 279377281, 382536001, 413138881, 542497201, 702683101, 781347841, 851703301, 939947009, 955134181, 3480174001, 4765950001, 5255104513, 5781222721, 5985964801, 7558388641, 7816642561, 8714965001, 9237473281, 13630072501, 18189007201, 21669076801, 21863001601, 23915494401, 25477682491
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Claude Goutier)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- D. H. Lehmer, On Euler's totient function, Bulletin of the American Mathematical Society, 38 (1932), 745-751.
- Wikipedia, Lehmer's totient problem.
- Index entries for sequences related to Carmichael numbers.
Crossrefs
Programs
-
Mathematica
carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; Select[carmichaels, PrimeOmega[EulerPhi[#]] < PrimeOmega[# - 1] &] (* Amiram Eldar, Dec 26 2020 *)
-
PARI
A002322(n) = lcm(znstar(n)[2]); \\ From A002322 isA339909(n) = ((n>1)&&issquarefree(n)&&!isprime(n)&&(bigomega(eulerphi(n))
A002322(n))));
Comments