cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339869 Carmichael numbers k for which A053575(k) [the odd part of phi] divides k-1.

Original entry on oeis.org

561, 1105, 2465, 6601, 8911, 10585, 46657, 62745, 162401, 410041, 449065, 5148001, 5632705, 6313681, 6840001, 7207201, 11119105, 11921001, 19683001, 21584305, 26719701, 41298985, 55462177, 64774081, 67371265, 79411201, 83966401, 87318001, 99861985, 100427041, 172290241, 189941761, 484662529, 790623289, 809883361
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

Lehmer conjectured that the equation k * phi(n) = n - 1 (with k integer) has no solutions for any composite n (i.e., when k > 1). If this sequence has no common terms with A339818, then the conjecture certainly holds.

Crossrefs

Intersection of A002997 and A339880.
Complement of A340092 in A002997.
Cf. also A339818, A339878, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; oddPart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := Divisible[n - 1, oddPart[EulerPhi[n]]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A002322(n) = lcm(znstar(n)[2]);
    isA339869(n) = ((n>1)&&!isprime(n)&&(!((n-1)%A002322(n)))&&!((n-1)%A000265(eulerphi(n))));

A339818 Carmichael numbers k for which the 2-adic valuation of phi(k) does not exceed the 2-adic valuation of k-1.

Original entry on oeis.org

1729, 15841, 3057601, 3828001, 5310721, 8355841, 8830801, 9439201, 14676481, 15829633, 17236801, 40280065, 78091201, 83099521, 84350561, 92625121, 94536001, 104852881, 118901521, 129762001, 157731841, 163954561, 180115489, 193708801, 214852609, 221884001, 279377281, 382304161, 382536001, 438359041, 481239361, 511338241
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2020

Keywords

Crossrefs

Intersection of A002997 and A339817 (see comments in latter).
Cf. also A339869, A339878, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[n_] := IntegerExponent[EulerPhi[n], 2] <= IntegerExponent[n - 1, 2]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
  • PARI
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    isA339818(n) = ((n>1)&&issquarefree(n)&&!isprime(n)&&(valuation(eulerphi(n),2)<=valuation(n-1,2))&&(0==((n-1)%A002322(n))));

A339908 Odd squarefree numbers k > 1 for which bigomega(phi(k)) < bigomega(k-1), where bigomega gives the number of prime divisors, counted with multiplicity.

Original entry on oeis.org

33, 65, 129, 141, 145, 161, 177, 201, 217, 249, 253, 321, 385, 393, 417, 501, 537, 649, 681, 705, 721, 737, 849, 865, 897, 913, 973, 993, 1041, 1057, 1081, 1101, 1121, 1135, 1149, 1169, 1177, 1281, 1329, 1345, 1401, 1441, 1457, 1473, 1497, 1509, 1537, 1561, 1569, 1585, 1633, 1689, 1729, 1761, 1793, 1821, 1837, 1841
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2020

Keywords

Comments

All terms can be found in A339911. Also, all nonmultiples of 3 certainly occur in A339912 also.
The first term of the form 4u+3 is 1135.

Crossrefs

Subsequence of A056911 and of A339907, A339911.
Cf. also A339912.
Cf. A339909 (a subsequence).

Programs

  • PARI
    isA339908(n) = ((n>1)&&(n%2)&&issquarefree(n)&&(bigomega(eulerphi(n))
    				

A339878 Carmichael numbers k such that phi(k) divides p*(k - 1) for some prime factor p of k - 1.

Original entry on oeis.org

1729, 3069196417, 23915494401, 1334063001601, 6767608320001, 33812972024833, 1584348087168001, 1602991137369601, 6166793784729601, 1531757211193440001, 84388996672599528001
Offset: 1

Views

Author

Antti Karttunen (after Thomas Ordowski's and Amiram Eldar's SeqFan-posting), Dec 26 2020

Keywords

Comments

The first ten terms are all in A339818, none is in A339869, and all except a(2) and a(6) are in A339909.
Also, for all ten, a(n) == 1 (mod 64). (Cf. a similar comment in A338998).

Crossrefs

Intersection of A002997 and A338998.
Cf. also A339818, A339869, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[n_] := Module[{p = FactorInteger[n - 1][[;; , 1]], phi = EulerPhi[n]}, AnyTrue[(n - 1)*p, Divisible[#, phi] &]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)

Extensions

a(10) from Amiram Eldar, Dec 26 2020
a(11) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 21 2024
Showing 1-4 of 4 results.