cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339914 Ordinal transform of sequence b(1) = 1, b(n) = A143771(n) for n > 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 3, 2, 6, 1, 7, 1, 4, 2, 8, 1, 9, 3, 5, 2, 10, 1, 11, 1, 6, 4, 12, 2, 13, 1, 7, 3, 14, 1, 15, 1, 8, 5, 16, 1, 17, 6, 9, 3, 18, 1, 19, 4, 10, 7, 20, 1, 21, 1, 11, 5, 22, 2, 23, 1, 12, 8, 24, 1, 25, 1, 13, 4, 26, 3, 27, 1, 14, 9, 28, 1, 29, 10, 15, 6, 30, 1, 31, 5, 16, 11, 32, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, GCD @@ Table[d + n/d, {d, Divisors[n]}]];
    b[_] = 1;
    a[n_] := a[n] = With[{t = f[n]}, b[t]++];
    Array[a, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A143771b(n) = if(1==n,1, my(d = divisors(n)); gcd(vector(#d, k, d[k]+n/d[k])));
    v339914 = ordinal_transform(vector(up_to,n,A143771b(n)));
    A339914(n) = v339914[n];