cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143771 a(n) = gcd(k + n/k), where k is over all divisors of n.

Original entry on oeis.org

2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 14, 3, 8, 1, 18, 1, 20, 3, 2, 1, 24, 1, 2, 3, 4, 1, 30, 1, 32, 3, 2, 1, 12, 1, 38, 3, 8, 1, 42, 1, 44, 3, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 62, 3, 8, 1, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 6, 1, 80, 3, 2, 1, 84, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 24, 1
Offset: 1

Views

Author

Leroy Quet, Aug 31 2008

Keywords

Comments

If n is the m-th composite, then a(n) = A143772(m).
If n is prime, then a(n) is defined as n+1, since a(n) = gcd(1+n, n+1).

Examples

			a(1) = gcd(1+1) = 2, i.e., the greatest common divisor of a singular set [2].
a(9) = gcd(1+9, 3+3, 9+1) = 2.
a(20) = gcd(1+20, 2+10, 4+5, 5+4, 10+2, 20+1) = 3.
a(44) = gcd(1+44, 2+22, 4+11, 11+4, 22+2, 44+1) = 3.
		

Crossrefs

Cf. A143772, A339873, A339914, A342918 [= (1+n) / a(n)].
After n=1 differs from A342915 for the first time at n=44, where a(44) = 3, while A342915(44) = 9.

Programs

  • Maple
    A143771 := proc(n) local dvs ; dvs := convert(numtheory[divisors](n),list) ; igcd(seq( op(i,dvs)+n/op(i,dvs), i=1..nops(dvs))) ; end: for n from 2 to 140 do printf("%d,",A143771(n)) ; od: # R. J. Mathar, Sep 05 2008
  • Mathematica
    Table[GCD @@ Map[# + n/# &, Divisors@ n], {n, 2, 96}] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    a(n) = my(d = divisors(n)); gcd(vector(#d, k, d[k]+n/d[k])); \\ Michel Marcus, Oct 05 2015

Extensions

Extended by R. J. Mathar, Sep 05 2008
Term a(1) = 2 prepended and Example-section extended by Antti Karttunen, Mar 29 2021

A339873 a(n) = 1 + n - A143771(n).

Original entry on oeis.org

0, 0, 4, 0, 6, 0, 6, 8, 10, 0, 12, 0, 12, 8, 16, 0, 18, 0, 18, 20, 22, 0, 24, 24, 24, 24, 28, 0, 30, 0, 30, 32, 34, 24, 36, 0, 36, 32, 40, 0, 42, 0, 42, 44, 46, 0, 48, 48, 48, 48, 52, 0, 54, 48, 54, 56, 58, 0, 60, 0, 60, 56, 64, 60, 66, 0, 66, 68, 70, 0, 72, 0, 72, 72, 76, 72, 78, 0, 78, 80, 82, 0, 84, 84, 84, 80
Offset: 2

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Programs

A344771 Ordinal transform of A342915, where A342915(n) = gcd(1+n, psi(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 3, 2, 6, 1, 7, 1, 4, 2, 8, 1, 9, 3, 5, 2, 10, 1, 11, 1, 6, 4, 12, 2, 13, 1, 7, 3, 14, 1, 15, 1, 1, 5, 16, 1, 17, 6, 8, 3, 18, 1, 19, 4, 9, 7, 20, 1, 21, 1, 10, 2, 22, 2, 23, 1, 11, 8, 24, 1, 25, 1, 12, 4, 26, 3, 27, 1, 2, 9, 28, 1, 29, 10, 13, 5, 30, 1, 31, 5, 14, 11, 32, 2, 33, 1, 15
Offset: 1

Views

Author

Antti Karttunen, May 31 2021

Keywords

Comments

Number of values of k, 1 <= k <= n, with A342915(k) = A342915(n).
a(p) = 1 for all primes p (and for some other numbers as well).

Crossrefs

Differs from A339914 for the first time at n=44, where a(44) = 1, while A339914(44) = 8.

Programs

  • Mathematica
    psi[n_] := If[n= 1, 1, Times@@((#1+1)*#1^(#2-1)& @@@ FactorInteger[n])];
    A342915[n_] := GCD[n+1, psi[n]];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A342915[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 22 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A342915(n) = gcd(1+n,A001615(n));
    v344771 = ordinal_transform(vector(up_to,n,A342915(n)));
    A344771(n) = v344771[n];

Formula

a(n) <= A344773(n).
Showing 1-3 of 3 results.