A339948 Number of non-isomorphic generalized quaternion rings over Z/nZ.
1, 1, 4, 7, 4, 16, 4, 16, 10, 16, 4, 40, 4, 16, 16, 36, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 52, 16, 16, 16
Offset: 1
Examples
For n=2 all such rings are isomorphic to Z_n<x,y>/(x^2, y^2, xy+yx), so a(2)=1. For n=4: Z_n<x,y>/(x^2, y^2, xy+yx), Z_n<x,y>/(x^2, y^2-1, xy+yx), Z_n<x,y>/(x^2, y^2-2, xy+yx), Z_n<x,y>/(x^2, y^2-3, xy+yx), Z_n<x,y>/(x^2-1, y^2-1, xy+yx), Z_n<x,y>/(x^2-1, y^2-2, xy+yx), Z_n<x,y>/(x^2-3, y^2-3, xy+yx), so a(4)=7.
Links
- José María Grau Ribas, Generalized quaternion rings over Z/nZ for an odd n
- Jose María Grau, C. Miguel and A. M. Oller-Marcen, Generalized Quaternion Rings over Z/nZ for an odd n, arXiv:1706.04760 [math.RA], 2017.
- J. M. Grau, C. Miguel and A. M. Oller-Marcén, Generalized quaternion rings over Z/nZ for an odd n, Advances in Applied Clifford Algebras, 28(1), (2018) article 17.
Crossrefs
Programs
-
Mathematica
Clear[phi]; phi[1] = phi[2] = 1; phi[4] = 7; phi[8] = 16; phi[16] = 36; phi[p_, s_] := 2 s^2 + 2; phi[n_] := Module[{aux = FactorInteger[n]},Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]]; Table[phi[i], {i,1, 35}]
Formula
If n is odd then a(n) = A286779(n).
Comments