cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340023 Number of graphs with n integer labeled vertices covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 24, 263, 5566, 239428, 21074412, 3779440490, 1372163701412, 1003687569555456, 1474604145003923000, 4343524388729516494384, 25623424478746329214500144, 302549202766446393276528844768, 7147753721248229224770005386691680
Offset: 0

Views

Author

Andrew Howroyd, Jan 01 2021

Keywords

Examples

			a(2) = 4 because there are 2 graphs on 2 vertices and each of these can either have both vertices labeled 1 or one vertex labeled 1 and the other 2.
		

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    G[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p]*k^Length[p], {p, IntegerPartitions[n]}]; s/n!];
    a[n_] := Module[{p = G[n, x]}, Sum[(p /. x -> k)*Sum[Binomial[r, k]*(-1)^(r - k), {r, k, n}], {k, 0, n}]];
    a /@ Range[0, 15] (* Jean-François Alcover, Jan 06 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    G(n,k)={my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*k^#p); s/n!}
    a(n)={my(p=G(n,x)); sum(k=0, n, subst(p,x,k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}