A340102 Number of factorizations of 2n + 1 into an odd number of odd factors > 1.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0
Keywords
Examples
The factorizations for 2n + 1 = 135, 225, 315, 405, 675, 1155, 1215: 135 225 315 405 675 1155 1215 3*5*9 5*5*9 5*7*9 5*9*9 3*3*75 3*5*77 3*5*81 3*3*15 3*3*25 3*3*35 3*3*45 3*5*45 3*7*55 3*9*45 3*5*15 3*5*21 3*5*27 3*9*25 5*7*33 5*9*27 3*7*15 3*9*15 5*5*27 3*11*35 9*9*15 3*3*3*3*5 5*9*15 5*11*21 3*15*27 3*15*15 7*11*15 3*3*135 3*3*3*5*5 3*3*3*5*9 3*3*3*3*15
Crossrefs
Programs
-
Maple
g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+ `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)), d=numtheory[divisors](n) minus {1, n})) end: a:= n-> `if`(n=0, 0, g(2*n+1$2, 1)): seq(a(n), n=0..100); # Alois P. Heinz, Dec 30 2020
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],OddQ[Length[#]]&&OddQ[Times@@#]&]],{n,1,100,2}];