cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340127 Decimal expansion of Product_{primes p == 4 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 0, 4, 9, 6, 0, 3, 2, 3, 9, 2, 2, 2, 9, 7, 5, 5, 8, 9, 9, 3, 7, 4, 9, 6, 2, 4, 8, 1, 0, 2, 5, 2, 1, 8, 4, 7, 9, 5, 5, 1, 0, 2, 9, 4, 1, 8, 8, 0, 2, 2, 8, 8, 0, 1, 9, 9, 5, 2, 8, 3, 7, 8, 5, 2, 1, 5, 0, 7, 1, 2, 7, 7, 0, 0, 7, 0, 0, 7, 6, 9, 8, 8, 5, 4, 3, 2, 4, 9, 1, 3, 6, 1, 1, 8, 0, 0, 6, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.0049603239222975589937496248102521847955102941880228801995283785215071277...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 4, 2]]

Formula

Equals (1/C(5,4))*Pi*sqrt(3*C(5,1)*C(5,2)*C(5,3)/(5*C(5,4)*log(2+sqrt(5)))).
for definitions of Mertens constants C(5,n) see A. Languasco and A. Zaccagnini 2010.
for high precision numerical values C(5,n) see A. Languasco and A. Zaccagnini 2007.
C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C(5,3)=0.8059510404482678640573768602784309320812881149390108979348...
C(5,4)=1.29936454791497798816084001496426590950257497040832966201678...
Equals (1/C(5,4)^2)*Pi*sqrt(3*exp(-gamma)/(4*log(2 + sqrt(5)))), where gamma is the Euler-Mascheroni constant A001620.
Equals Sum_{k>=1} 1/A004618(k)^2. - Amiram Eldar, Jan 24 2021