A340132 Least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequence A000926 (idoneal numbers).
1083289, 3818929, 6104641, 6868801, 7623529, 8465209, 9033649, 10105489, 11400481, 11597569, 11809561, 12338041, 12348961, 13154761, 13426009, 15861169, 16889161, 16922161, 18596449, 19684729, 20322481, 21067201, 21480001, 22684561, 23654569, 24531049
Offset: 1
Keywords
Examples
1083289 = 315^2 + A000926(1)*992^2 = 1033^2 + A000926(2)*90^2 = 979^2 + A000926(3)*204^2 = ... = 817^2 + A000926(65)*15^2.
Programs
-
PARI
Idoneal()={return(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848]));} isok(p,u)={my (i, s, n=matsize(u)[2], t=0);for(i=1, n, s=kronecker(-u[i],p); if(s==1, t++,break));if(t==n,t=0;for(i=1, n, s=qfbsolve(Qfb(1,0,u[i]),p); if(s==[], break,t++)));if(t==n,1,0)} Primo(p, m)={my(u=Idoneal()); while(p
r,v=concat(v,q),q=m)); return(v);}
Comments