cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340162 a(1) = 7; thereafter a(n) is the smallest number k with exactly three 1-bits, not already in the sequence, for which k*a(n - 1) has exactly three 1-bits (A014311).

Original entry on oeis.org

7, 14, 19, 28, 37, 56, 38, 112, 74, 224, 76, 448, 148, 896, 152, 1792, 296, 3584, 304, 7168, 592, 14336, 608, 28672, 1184, 57344, 1216, 114688, 2368, 229376, 2432, 458752, 4736, 917504, 4864, 1835008, 9472, 3670016, 9728, 7340032, 18944, 14680064, 19456, 29360128
Offset: 1

Views

Author

Marius A. Burtea, Dec 30 2020

Keywords

Comments

It seems that a(2*k) = 2^k*7, a(4*k - 1) = 2^(k - 1)*19, a(4*k + 1) = 2^(k - 1)*37, k >= 1.

Examples

			a(1) * a(2) = 7 * 14 = A014311(1) * A014311(4) = A014311(32).
a(2) * a(3) = 14 * 19 = A014311(4) * A014311(5) = A014311(61).
a(3) * a(4) = 19 * 28 = A014311(5) * A014311(10) = A014311(93).
		

Crossrefs

Programs

  • Magma
    fb:=func; a:=[7]; for n in [2..44] do k:=7; while k in a or (not fb(k) or not fb(a[n-1]*k)) do k:=k+1; end while; Append(~a,k); end for; a;
    
  • PARI
    isokd(n) = hammingweight(n) == 3; \\ A014311
    nexth(n) = my(u=bitand(n, -n), v=u+n); (bitxor(v, n)/u)>>2+v; \\ A057168
    nextk(va, n) = {my(ok = 0, k = 7); while (! (isokd(k*va[n-1]) && !#select(x->(x==k), va)), k = nexth(k)); k;}
    lista(nn) = {my(va = vector(nn)); va[1] = 7; for (n=2, nn, my(k = nextk(va, n)); va[n] = k;); va; } \\ Michel Marcus, Jan 14 2021

Formula

Conjectures from Chai Wah Wu, Jan 27 2021: (Start)
a(n) = 2*a(n-2) + 2*a(n-4) - 4*a(n-6) for n > 7.
G.f.: x*(-46*x^6 - 28*x^5 - 15*x^4 + 5*x^2 + 14*x + 7)/((2*x^2 - 1)*(2*x^4 - 1)). (End)