A340181 a(n) = Product_{1<=j,k,m<=n} (4*sin(j*Pi/(2*n+1))^2 + 4*sin(k*Pi/(2*n+1))^2 + 4*sin(m*Pi/(2*n+1))^2).
1, 9, 7486875, 14334918272193811385583, 1483160703050490588200236172057973908184332257091136
Offset: 0
Keywords
Programs
-
Mathematica
Round[Table[2^(n^3)* Product[3 - Cos[2*j*Pi/(2*n + 1)] - Cos[2*k*Pi/(2*n + 1)] - Cos[2*m*Pi/(2*n + 1)], {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
-
PARI
default(realprecision, 500); {a(n) = round(prod(j=1, n, prod(k=1, n, prod(m=1, n, 4*sin(j*Pi/(2*n+1))^2+4*sin(k*Pi/(2*n+1))^2+4*sin(m*Pi/(2*n+1))^2))))}
Formula
Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021
Comments