cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340182 a(n) = Product_{1<=j,k,m<=n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2 + 4*cos(m*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 3, 61731, 220157391087140625, 3109768877542258728107559478225309328087616
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/3^n)^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[4^(n^3) * Product[Cos[j*Pi/(2*n + 1)]^2 + Cos[k*Pi/(2*n + 1)]^2 + Cos[m*Pi/(2*n + 1)]^2, {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* or *)
    Round[Table[2^(n^3) * Product[3 + Cos[2*j*Pi/(2*n + 1)] + Cos[2*k*Pi/(2*n + 1)] + Cos[2*m*Pi/(2*n + 1)], {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* or *)
    Round[Table[Product[u = Sqrt[Cos[j*Pi/(2*n + 1)]^2 + Cos[k*Pi/(2*n + 1)]^2]; (((u + Sqrt[1 + u^2])^(2*n + 1) - (u - Sqrt[1 + u^2])^(2*n + 1))/(2*Sqrt[1 + u^2])), {j, 1, n}, {k, 1, n}], {n, 0, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n, prod(k=1, n, prod(m=1, n, 4*cos(j*Pi/(2*n+1))^2+4*cos(k*Pi/(2*n+1))^2+4*cos(m*Pi/(2*n+1))^2))))}

Formula

From Vaclav Kotesovec, Jan 04 2021: (Start)
a(n) ~ c * d^n * s^(n^2) * r^(n^3), where
r = exp(8*A340322/Pi^3) = exp((8/Pi^3) * Integral_{x=0..Pi/2, y=0..Pi/2, z=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2) dx dy dz) = 5.3302028892051674211345979966496595201084467305922855029660919024805225841...
s = 0.57208914727550556482486188829703578692890272003698306852389010626941042...
d = 0.91012013388841787275362130594290903074302493828277326742531159...
c = 1.057086458532774496412062406469810663638243576302292119... (End)

A340183 a(n) = Product_{1<=j,k,m<=n-1} (4*sin(j*Pi/(2*n))^2 + 4*sin(k*Pi/(2*n))^2 + 4*sin(m*Pi/(2*n))^2).

Original entry on oeis.org

1, 6, 1157625, 170875128460147163136, 448524809573174705684873233798538664686384705625
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/(n*3^(n-1)))^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[2^((n-1)^3)* Product[3 - Cos[j*Pi/n] - Cos[k*Pi/n] - Cos[m*Pi/n], {j, 1, n-1}, {k, 1, n-1}, {m, 1, n-1}], {n, 1, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n-1, prod(k=1, n-1, prod(m=1, n-1, 4*sin(j*Pi/(2*n))^2+4*sin(k*Pi/(2*n))^2+4*sin(m*Pi/(2*n))^2))))}

Formula

a(n) = Product_{1<=i,j,k<=n-1} (4*f(i*Pi/(2*n))^2 + 4*g(j*Pi/(2*n))^2 + 4*h(k*Pi/(2*n))^2), where f(x), g(x) and h(x) are sin(x) or cos(x).
Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021
Showing 1-2 of 2 results.