A340186 Number of Brown's diagonal Latin squares of order 2n.
0, 48, 184320, 3948134400, 3470226200985600
Offset: 1
Examples
The diagonal Latin square . 0 1 2 3 4 5 6 7 8 9 1 2 3 4 0 9 5 6 7 8 4 0 1 7 3 6 2 8 9 5 8 7 6 5 9 0 4 3 2 1 7 6 5 0 8 1 9 4 3 2 9 8 7 6 5 4 3 2 1 0 5 9 8 2 6 3 7 1 0 4 3 5 0 8 7 2 1 9 4 6 2 3 4 9 1 8 0 5 6 7 6 4 9 1 2 7 8 0 5 3 . is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs: . 0 1 2 3 4 5 6 7 8 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 4 0 9 5 6 7 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 1 7 3 6 2 8 9 5 . . . . . . . . . . 8 7 6 5 9 0 4 3 2 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8 7 6 5 4 3 2 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9 8 2 6 3 7 1 0 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 5 0 8 1 9 4 3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 0 8 7 2 1 9 4 6 2 3 4 9 1 8 0 5 6 7 . . . . . . . . . . . . . . . . . . . . 6 4 9 1 2 7 8 0 5 3
References
- J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.
Links
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Eduard I. Vatutin, Enumeration of the Brown's diagonal Latin squares of orders 1-9 (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
Formula
a(n) = A339305(n) * (2*n)!.
Extensions
a(3) corrected by Eduard I. Vatutin and Oleg Zaikin, Jan 12 2025
a(5) added by Eduard I. Vatutin and Oleg S. Zaikin, Apr 02 2025
Comments