cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340192 a(n) = Sum_{d|n} A063994(d), where A063994(x) = Product_{primes p dividing x} gcd(p-1, x-1).

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 7, 4, 5, 7, 11, 7, 13, 9, 11, 5, 17, 8, 19, 9, 13, 13, 23, 9, 9, 15, 7, 13, 29, 15, 31, 6, 17, 19, 15, 11, 37, 21, 19, 11, 41, 17, 43, 15, 21, 25, 47, 11, 13, 12, 23, 19, 53, 11, 19, 15, 25, 31, 59, 19, 61, 33, 19, 7, 33, 25, 67, 21, 29, 21, 71, 14, 73, 39, 19, 25, 21, 23, 79, 13, 9, 43, 83, 23, 37
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Inverse Möbius transform of A063994.

Programs

  • PARI
    A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };
    A340192(n) = sumdiv(n,d,A063994(d));

Formula

a(n) = Sum_{d|n} A063994(d).
a(n) = n - A340193(n).

A340187 Dirichlet inverse of A063994(x) = Product_{primes p dividing x} gcd(p-1, x-1).

Original entry on oeis.org

1, -1, -2, 0, -4, 3, -6, 0, 2, 7, -10, -1, -12, 11, 12, 0, -16, -5, -18, -3, 20, 19, -22, 0, 12, 23, -2, -7, -28, -29, -30, 0, 36, 31, 44, 4, -36, 35, 44, 0, -40, -49, -42, -9, -24, 43, -46, 0, 30, -33, 60, -13, -52, 7, 76, 4, 68, 55, -58, 23, -60, 59, -36, 0, 80, -93, -66, -15, 84, -119, -70, -1, -72, 71, -52, -19
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA063994(n)));
    A340187(n) = v340187[n];

A340191 Difference between A063994 and its Möbius transform.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 6, 5, 1, 1, 1, 1, 1, 7, 10, 1, 1, 4, 12, 2, 1, 1, 0, 1, 1, 11, 16, 9, 1, 1, 18, 13, 1, 1, -2, 1, 1, 4, 22, 1, 1, 6, 1, 17, 1, 1, 1, 13, 3, 19, 28, 1, 1, 1, 30, 4, 1, 15, -6, 1, 1, 23, -4, 1, 1, 1, 36, 4, 1, 15, -8, 1, 1, 2, 40, 1, 3, 19, 42, 29, 1, 1, 5, 17, 1, 31, 46, 21
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Programs

  • PARI
    A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };
    A340191(n) = -sumdiv(n,d,(dA063994(d));

Formula

a(n) = A063994(n) - A340190(n).
a(n) = -Sum_{d|n, dA008683(n/d) * A063994(d).
Showing 1-3 of 3 results.